期刊文献+

一种基于FPGA的实时去雾系统建模与设计 被引量:1

Modeling and Design of Real-Time Defogging System Based on FPGA
下载PDF
导出
摘要 雾霾会导致视频图像质量下降,对比度降低,使其显得模糊不清,这为视频图像的观看以及特征提取增加了困难.针对这一问题,使用现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)芯片,利用基于模型的设计方法搭建了一套实时去雾系统.首先针对FPGA芯片性能特性,对暗通道先验原理公式进行研究及优化,然后根据优化后的公式,在Simulink环境下利用Vision HDL Toolbox工具,搭建了基于像素流处理的去雾算法模型,之后通过Matlab自动代码生成的功能自动生成Verilog代码,烧录到FPGA芯片中,最后对设计的实时去雾系统进行实验.实验结果表明,该系统可对480p、60帧/秒的视频图像进行去雾处理,且具有良好的实时性,以及较低的功耗. The smog will cause the quality of the video image to decrease,and the contrast will be reduced,making it appear blurry,which makes it difficult to view and extract features of the video image.To solve this problem,a real-time defogging system is built by using Field Programmable Gate Array(FPGA)chip and model-based design method.Firstly,according to the performance characteristics of FPGA chip,the a priori principle formula of dark channel is studied and optimized.Then,according to the optimized formula,a defog algorithm model based on pixel flow processing is built by using Vision HDL Toolbox tool in Simulink environment.After that,the Verilog code is automatically generated by the function of Matlab automatic code generation,and burned to the FPGA chip.finally,the real-time defogging system of the design is tested.The experimental results show that the system can defog the video image of 480p camera at 60 frames per second,and has good real-time performance and low power consumption.
作者 任雪冰 杜宏 张孝峥 REN Xuebing;DU Hong;ZHANG Xiaozheng(China North Vehicle Research Institute, Beijing 100072, China)
出处 《车辆与动力技术》 2020年第1期25-30,共6页 Vehicle & Power Technology
关键词 图像去雾 暗通道先验原理 FPGA芯片 像素流 image defogging dark channel prior principle FPGA chip pixel stream
  • 相关文献

参考文献2

二级参考文献80

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2余松煜.数字图像处理[M].北京:电子工业大学出版社,1989..
  • 3孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 4VOICU L I, HARLEY R,MYLER A R. Practical considerations on color image enhencement using homomorphic filtering[ J ]. Journal of Electronic Image, 1997,6 ( 1 ) :108 - 113.
  • 5MALLET S. A theory for multiresolution signal decompositon :the wavelet representation[ J ]. IEEE Trans,PAMI, 1989,11 (7) :674 - 693.
  • 6Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 7Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 8Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 9Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 10Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.

共引文献227

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部