摘要
近年来,以Google神经网络为代表的机器翻译发展迅猛,且对于某些正式文本的翻译质量高达百分之六七十,但机器译文仍需要人工进行审校与修改,因此以机器翻译为基础的译后编辑需要进一步深入研究。从中国知网(CNKI)数据库选取200篇来自江西理工大学强势学科有色金属方面的SCI、EI科技论文(2015-2017年)的中文摘要进行Google汉英机器翻译,并对译文进行人工分析,同时参考其原有英文摘要进行比较研究。结果显示:Google科技文本汉英机器翻译的错误主要在于词汇、句法、逻辑等方面,且出现错误频率依次递减。针对以上4类错误,笔者进行详细的案例分析,在词汇、句法、逻辑、标点使用方面提出应对措施,为科技文本机器翻译的译后编辑提供实践参考。
In recent years,machine translation led by Google’s Neural Machine Translation System has developed rapidly,with the accuracy of translation being greatly improved to 60 percent to 70 percent.However,human reviewing and revising are still needed in machine translation for greater accuracy,and post-editing in machine translation requires further researches.The author selected 200 Chinese abstracts of SCI and EI scientific papers on non-ferrous metals(20152017年),and translated them into English with Google’s Neural Machine Translation System.The machine translated English texts were compared with the original English abstracts manually,and the results showed that the errors in the machine translated English abstracts existed in four aspects:vocabulary,syntax,logic and others,and the frequency of errors decreased in turn.Based on the case analysis,the author puts forward the resolutions in terms of vocabulary,syntax,logic and others,providing practical reference for post-editing in machine translation of science and technology texts.
作者
蔡强
董冬冬
Cai Qiang;Dong Dongdong(Faculty of Foreign Studies,Jiangxi University of Science and Technology,Ganzhou Jiangxi,341000,China)
出处
《西南石油大学学报(社会科学版)》
2020年第1期107-112,共6页
Journal of Southwest Petroleum University(Social Sciences Edition)
基金
江西省教育科学“十三五”规划2017年度课题“语料库翻译在MTI人才培养中的应用实践与效果研究”(17YB085)
江西理工大学校级研究生创新专项基金项目2018年度“机器翻译译后编辑在《有色金属科学与工程》期刊摘要英译中的应用研究”(ZS2018-S209)。