期刊文献+

甲基黄药和丁基黄药在黄铜矿(001)和(112)面的吸附机理研究 被引量:2

Adsorption Mechanism of Methyl and Butyl Xanthate on Chalcopyrite (001) and (112) Surfaces
下载PDF
导出
摘要 黄铜矿作为铜最主要的赋存矿物,主要通过浮选与其他脉石矿物进行分离。但是,黄铜矿破碎过程会暴露出不同晶面,由于每个晶面性质存在差异,导致黄铜矿浮选过程中不同晶面与药剂的作用机理不同,造成不同的浮选效果。基于密度泛函理论,研究了甲基黄药和丁基黄药在黄铜矿(001)-M面和(112)-M面的吸附机理。计算结果表明,相比于(001)-M面,(112)-M面更稳定。2种黄药主要通过静电作用吸附在黄铜矿(112)-M面,而甲基黄药通过C-S单键中的S原子与黄铜矿表面Cu原子成键,丁基黄药通过2个S原子分别与(001)-M面上的Cu和Fe原子成键。因此,2种黄药在黄铜矿(001)-M和(112)-M的吸附机理不同。 Chalcopyrite,as the most important Cu-bearing mineral,is predominantly separated from the gangue minerals via flotation.However,the crushing and grinding processes produce different chalcopyrite surfaces.The reacting mechanisms between the flotation reagents and different chalcopyrite surfaces vary due to the different properties of various surfaces.This study investigates the adsorption mechanism of methyl and butyl xanthate on chalcopyrite(001)-M and(112)-M surfaces based on the density functional theory.The results show that these two xanthates are mainly adsorbed on chalcopyrite(112)-M surface via electrostatic adsorption.However,methyl xanthate is adsorbed on chalcopyrite(001)-M surface via forming S-Cu bonds while butyl xanthate is adsorbed on chalcopyrite(001)-M surface via forming S-Fe and S-Cu bonds.This indicates that the reacting mechanism of these two xanthates on chalcopyrite(001)-M and(112)-M is different.
作者 范瑞华 李育彪 魏桢伦 Fan Ruihua;Li Yubiao;Wei Zhenlun(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《金属矿山》 CAS 北大核心 2020年第2期15-18,共4页 Metal Mine
基金 国家自然科学基金项目(编号:51974215,51604205,51774223) 国家大学生创新创业训练计划(编号:201810497113)。
关键词 黄铜矿 密度泛函理论 黄药 吸附 晶面 Chalcopyrite Density functional theory Xanthate Adsorption Lattice surface
  • 相关文献

参考文献2

二级参考文献32

  • 1TichangSun.Action time effect of lime on its depressive ability for pyrite[J].Journal of University of Science and Technology Beijing,2004,11(3):193-196. 被引量:1
  • 2凌竟宏 胡庚熙.黄铁矿的半导体性质与可浮性的关系.中南矿冶学院学报,1988,19(1):10-14.
  • 3刘海超 凌竞宏等.三种不同类型矿床黄铁矿浮选行为的比较.中南矿冶学院学报,1982,:62-66.
  • 4WANG X H, FORSSBERG K S E. The solution electrochemistry of sulfide-xanthate-cyanide systems in sulfide mineral flotation[J]. Minerals Engineering, 1996, 9(5): 527-546.
  • 5SZARGAN R, KARTHE S, SUONIEN E. XPS studies of xanthate adsorption on pyrite[J]. Applied Surface Science, 1992, 55: 227-232.
  • 6HU Y H, ZHANG S L, QIU G Z, MILLER J D. Surface chemistry of activation of lime-depressed pyrite flotation[J]. Transactions of Nonferrous Metals Society of China, 2000, 10(6) 798-803.
  • 7LI Y Q, CHEN J H, KANG D, GUO J. Depression of pyrite in alkaline medium and its subsequent activation by copper[J]. Minerals Engineering, 2012, 26: 64-69.
  • 8LI Y Q, CHE J H, CHEN Y, GUO J. DFT study of influences of As, Co and Ni impurities on pyrite (100) surface oxidation by O2 molecule[J]. Chemical Physics Letters, 2011, 511 (4/6): 389-392.
  • 9CHANTURIYA V A, FEDOROV A A, MATVEEVA T N. The effect of auriferrous pyrites non-stoichiometry on their flotation and sorption properties[J]. Physicochemical Problems of Mineral Processing, 2000, 34:163-170.
  • 10CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M J, REFSON K, PAYNE M C. First principles methods using CASTEP[J]. Zeitischrift ftir Kristallographie, 2005, 220(5/6): 567-570.

共引文献14

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部