期刊文献+

Cloth simulation-based construction of pitfree canopy height models from airborne LiDAR data 被引量:3

下载PDF
导出
摘要 Background:The universal occurrence of randomly distributed dark holes(i.e.,data pits appearing within the tree crown)in LiDAR-derived canopy height models(CHMs)negatively affects the accuracy of extracted forest inventory parameters.Methods:We develop an algorithm based on cloth simulation for constructing a pit-free CHM.Results:The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details.Our pitfree CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms,as evidenced by the lowest average root mean square error(0.4981 m)between the reference CHMs and the constructed pit-free CHMs.Moreover,our pit-free CHMs show the best performance overall in terms of maximum tree height estimation(average bias=0.9674 m).Conclusion:The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.
出处 《Forest Ecosystems》 SCIE CSCD 2020年第1期1-13,共13页 森林生态系统(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.41671414,41971380 and 41171265) the National Key Research and Development Program of China(No.2016YFB0501404).
  • 相关文献

共引文献1

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部