期刊文献+

基于纹理特征的维吾尔文离线手写签名鉴别 被引量:4

Uyghur offline handwritten signature verification based on texture features
下载PDF
导出
摘要 为进一步提高维吾尔文离线手写签名鉴别正确率,提出基于纹理特征融合的离线签名鉴别方法。对经过预处理的签名图像分别提取多尺度块局部二值模式(MB-LBP)和局部相位量化(LPQ)两种纹理特征,将两种特征进行串联融合,形成高维纹理特征向量。通过训练随机森林(RF)对签名图像进行分类鉴别。在共包含1800个签名图像的维吾尔文数据库和包含2640个签名图像的CEDAR数据库中得到的总正确率分别为96.35%和96.73%,结果表明该方法有效提高了维吾尔文离线手写签名鉴别正确率。 To further improve the accuracy of Uyghur offline handwritten signature verification,an offline signature verification method based on texture feature fusion was proposed.Multi-scale block local binary pattern(MB-LBP)and local phase quantization(LPQ)were used to extract the features of pre-processed signature images.The features were fused in series to form a high dimensional texture feature vector.The signature image features were classified and verified through training random forest(RF).96.35%and 96.73%of overall right rate(ORR)are obtained respectively on Uyghur signature database containing a total of 1800 samples and CEDAR Latin signature database containing 2640 samples.The results show that the proposed method effectively improves the ORR of Uyghur offline handwritten signature verification.
作者 张淑婧 麦合甫热提 吾尔尼沙·买买提 朱亚俐 库尔班·吾布力 ZHANG Shu-jing;Mahpira;Hornisa·Mamat;ZHU Ya-li;Kurban·Ubul(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Educational Administration Department,Xinjiang University,Urumqi 830046,China)
出处 《计算机工程与设计》 北大核心 2020年第3期770-776,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61862061、61563052、61163028) 新疆大学2018年度博士启动基金项目(62008040)。
关键词 维吾尔文 手写签名鉴别 多尺度块局部二值模式 局部相位量化 随机森林 Uyghur signature verification multi-scale block local binary pattern local phase quantization random forest
  • 相关文献

参考文献6

二级参考文献47

  • 1陈雪,朱敏,钟煜,范量.基于HTM的离线手写签名识别及改进[J].四川大学学报(工程科学版),2011,43(S1):146-150. 被引量:5
  • 2万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 3Medam Manoj Kumar,Niladri Bihari Puhan.Off-line signature verification:upper and lower envelope shape analysis using chord moments[J].IET Biometrics,2014,3(4):347-354.
  • 4Kurban Ubul,Andy Adler,Nurbiya Ydikar.Effects on accuracy of Uyghur handwritten signature recognition[J].Communications in Computer and Information Science,2012,321(6):548-555.
  • 5Javier Galbally,Moises Diaz-Cabrera,Miguel A.Ferrer,et al.On-line signature recognition through the combination of real dynamic data and synthetically generated static data[J].Pattern Recognition,2015,48(9):2921-2934.
  • 6Bence Kovari,Hassan Charaf.A study on the consistency and significance of local features in off-line signature verification[J].Pattern Recognition Letters,2013,34(3):247-255.
  • 7AliKarouni,Bassam Daya,Samia Bahlak.Offline signature recognition using neural networks approach[J].Procedia Computer Science,2011,3:155-161.
  • 8Marcin Piekarczyk,Marek R Ogiela.Matrix-based hierarchical graph matching in off-line handwritten signatures recognition[C]//Proc of the Second IAPR Asian Conference on Pattern Recognition.Okinawa:IEEE,1993:897-901.
  • 9Kurban Ubul,Andy Adler,Gulirana Abliz,et al.Off-line Uyghur signature recognition based on modified grid information features[C]//Proc of the 11th International Conference on Information Sciences,Signal Processing and Their Applications.Montreal:IEEE,2012:1056-1061.
  • 10Kurban Ubul,Askar Hamdulla,Alim Aysa,et al.Research on Uyghur off-line handwriting-based writer identification[C]//Proc of the 9th International Conference of Signal Processing:Beijing,IEEE,2008:1656-1659.

共引文献37

同被引文献87

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部