摘要
为进一步提高维吾尔文离线手写签名鉴别正确率,提出基于纹理特征融合的离线签名鉴别方法。对经过预处理的签名图像分别提取多尺度块局部二值模式(MB-LBP)和局部相位量化(LPQ)两种纹理特征,将两种特征进行串联融合,形成高维纹理特征向量。通过训练随机森林(RF)对签名图像进行分类鉴别。在共包含1800个签名图像的维吾尔文数据库和包含2640个签名图像的CEDAR数据库中得到的总正确率分别为96.35%和96.73%,结果表明该方法有效提高了维吾尔文离线手写签名鉴别正确率。
To further improve the accuracy of Uyghur offline handwritten signature verification,an offline signature verification method based on texture feature fusion was proposed.Multi-scale block local binary pattern(MB-LBP)and local phase quantization(LPQ)were used to extract the features of pre-processed signature images.The features were fused in series to form a high dimensional texture feature vector.The signature image features were classified and verified through training random forest(RF).96.35%and 96.73%of overall right rate(ORR)are obtained respectively on Uyghur signature database containing a total of 1800 samples and CEDAR Latin signature database containing 2640 samples.The results show that the proposed method effectively improves the ORR of Uyghur offline handwritten signature verification.
作者
张淑婧
麦合甫热提
吾尔尼沙·买买提
朱亚俐
库尔班·吾布力
ZHANG Shu-jing;Mahpira;Hornisa·Mamat;ZHU Ya-li;Kurban·Ubul(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Educational Administration Department,Xinjiang University,Urumqi 830046,China)
出处
《计算机工程与设计》
北大核心
2020年第3期770-776,共7页
Computer Engineering and Design
基金
国家自然科学基金项目(61862061、61563052、61163028)
新疆大学2018年度博士启动基金项目(62008040)。