期刊文献+

基于融合特征的自适应阈值镜头边界检测算法

Adaptive threshold shot boundary detection algorithm based on fusion features
下载PDF
导出
摘要 针对目前镜头边界检测算法易造成错检漏检、人工确定阈值具有不确定性及渐变镜头相邻帧之间特征变化较小难以检测到的情况,提出一种融合RGB颜色直方图特征与方向梯度直方图(HOG)特征的自适应阈值多步比较方案镜头边界检测算法。通过计算多个步骤的帧之间的差异,生成一个多步帧差模式距离图,分析它们在模式距离图中的模式来检测它们的变化,在阈值确定方面加入自适应阈值。采用卷积神经网络(CNN)对视频帧提取特征,使用该算法与单一特征算法及其它文献算法作比较。实验结果表明,该算法的查全率和查准率相比其它算法都有较好提高。 In view of the situation that the current shot boundary detection algorithm is easy to cause error detection,leakage detection and difficulty to detect the feature change between adjacent frames of gradient shot,a shot boundary detection algorithm based on RGB color histogram feature and histogram of oriented gradients(HOG)feature was proposed.By calculating the differences between frames of multiple steps,a frame difference mode distance graph was generated,and their patterns in the pattern distance diagram were analyzed to see if they were gradients or abrupt shots.An adaptive threshold was added to determine the threshold.Convolution neural network(CNN)was also used to extract the features of video frames.The proposed algorithm was compared with single feature algorithm and other literature algorithms.Experimental results show that the recall rate and precision rate of this algorithm are better than other algorithms.
作者 李秋玲 赵磊 邵宝民 王雷 姜雪 LI Qiu-ling;ZHAO Lei;SHAO Bao-min;WANG Lei;JIANG Xue(College of Computer Science and Technology,Shandong University of Technology,Zibo 255049,China)
出处 《计算机工程与设计》 北大核心 2020年第3期777-782,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61502282) 山东省自然科学基金项目(ZR2015FQ005)。
关键词 镜头边界检测 方向梯度直方图 模式距离图 自适应阈值 卷积神经网络 shot boundary detection HOG pattern distance graph adaptive threshold CNN
  • 相关文献

参考文献5

二级参考文献48

  • 1Li S, Lee M C. Ef{ecvive detection of various wipe transitions E J. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17 (6): 663 673.
  • 2Mohanta P P, Saha S K, Chanda B. A model-based shot boundary detection technique using frame transi- tion parameters[J]. IEEE Transactions on Multimedi a, 2012, 14(1).-223-233.
  • 3Li Y N, Lu Z M, Niu X M. Fast video shot boundarydetection framework employing pre-processing tech- niques[J]. IEEE Image Process, 2009, 3 (3) :121-134.
  • 4Gao Guangyu, Ma Huadong. Accelerating shot bound- ary detection by reducing spatial and temporal redun- dant information[C] ff IEEE International Conference on Multimedia and Expo. Piscataway, NJ, USA: IEEE, 2011:1-6.
  • 5Boreczky J S, Row L A. Comparison of video shot boundary detection techniques[J]. Journal of Electron- ic Imaging, 1996, 5(2) ..122-128.
  • 6Zhang Hongjiang, Wu Jianhua, Zhong Di, et al. An integrated system for content-based video retrieval and lrowsing E J ] Pattern Recognition, 1997, 30 ( 4 ) .. 643-658.
  • 7Geronimo D, Lopez A. Survey of pedestrain detection for ada- vanced driver assistance systems]-J2. IEEE Trans. On Pattern Analysis and Machine Intelligence,2010,32(7): 1239-1258.
  • 8Luo R C,Chen O. Wireless and Pyroelectric Sensory Fusion Sys- tem for Indoor Human/Robot Localization and Monitoring[J]. IEEE/ASME Transactions on Mechatronics, 2013,18 (3) : 845- 853.
  • 9Uddin M-Z, Kim D-H, Kim J T, et al. An Indoor Human Activi- ty Recognition System for Smart Home Using Local Binary Pat-tern Features with Hidden Markov ModelsFJ]. Indoor and Built Environment, 2013,22 (1) 289-298.
  • 10Dalai N, Tfiggs B. Histograms of Oriented Gradients for Hu- manDetection[C]//Proceedings of IEEE Computer Society Con- ference On Computer Vision and Pattern Recognition. IEEE Press, 2005 : 886-893.

共引文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部