期刊文献+

基于矩阵方法的Banzhaf值的计算及应用 被引量:3

Matrix approach to calculation of Banzhaf value with applications
下载PDF
导出
摘要 在合作博弈中,Banzhaf值提供了每个参与者形成大联盟的预期边际贡献,因此Banzhaf值的求解是一个重要的研究内容.本文首先回顾合作博弈及Banzhaf值的定义,并且运用矩阵半张量积,给出合作博弈特征函数的代数表示.然后给出了Banzhaf值的等价的代数形式和简捷的计算方法.最后将所得结果应用于生物网络中,用Banzhaf值度量遗传疾病基因相关性的可能性,确定与遗传疾病发病高度相关的基因. In cooperative games,Banzhaf value provides the expected marginal contribution of each participant to form a major alliance.Therefore,the calculation of Banzhaf value is an important issue.Firstly,this paper recalls the definitions of cooperative game and Banzhaf value,and establishes the algebraic representation for the characteristic function of cooperative game by using the semi-tensor product of the matrices.Secondly,based on the algebraic representation,the equivalent algebraic form of Banzhaf value is presented,and a simple calculation method is provided for Banzhaf value.Finally,the obtained results are applied to biological networks,and the Banzhaf value is used to determine the genes which are highly associated with genetic diseases.
作者 夏美霞 李海涛 丁雪莹 刘衍胜 XIA Mei-xia;LI Hai-tao;DING Xue-ying;LIU Yan-sheng(School of Mathematics and Statistics,Shandong Normal University,Jinan Shandong 250014,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第2期446-452,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61873150,61503225) 山东省自然科学基金项目(JQ201613)资助。
关键词 博弈 Banzhaf值 矩阵半张量积 微阵列矩阵 games Banzhaf value semi-tensor product of matrices microarray matrix
  • 相关文献

参考文献9

二级参考文献46

  • 1程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:53
  • 2程代展,郭宇骞.切换系统进展[J].控制理论与应用,2005,22(6):954-960. 被引量:57
  • 3Bin MENG,Jifeng ZHAN.Reachability analysis of switched linear discrete singular systems[J].控制理论与应用(英文版),2006,4(1):11-17. 被引量:2
  • 4WANG Q F, GUAN Y P, WANG J" H. A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output [J]. IEEE Transactions on Power Systems, 2012, 27(1): 206 - 215.
  • 5WANG J H, SHAHIDEHPOUR M, LI Z Y. Security-constrained unit commitment with volatile wind power generation [J]. IEEE Transac- tions on Power Systems, 2008, 23(3): 1319 - 1327.
  • 6BERTSIMAS D, LITV1NOV E, SUN X A, et al. Adaptive robust op- timization for the security constrained unit commitment problem [J]. IEEE Transactions on Power Systems, 2013, 28(1): 52 - 63.
  • 7JIANG R W, WANG J H, GUAN Y E Robust unit commitment with wind power and pumped storage hydro [J]. IEEE Transactions on Power Systems, 2012, 27(2): 800 - 810.
  • 8WANG J, BOTTERUD A, BESSA R, et al. Wind power forecasting uncertainty and unit commitment [J]. Applied Energy, 2011, 88(11): 4014 - 4023.
  • 9KARANGELOS E, BOUFFARD F. A co-operative game theory approach to wind power generation imbalance cost allocation [EB/OL]. http: //www.pscc-central.org/uploads/tx_ethpublications/ fp42_01.pdf. 2011/2013.
  • 10梅生伟,刘锋,魏鞯.工程博弈论基础及其电力系统应用[M].北京:科学出版社,2015.

共引文献52

同被引文献32

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部