摘要
研究了包含多重Rellich项和强耦合临界非线性项的两类临界双调和方程组,首先研究了相关最佳Sobolev常数的达到函数对;其次,在一定的假设条件,利用变分法的山路定理证明了非平凡解的存在性.本文中的双调和方程组是首次被研究,所得到的结果都是新的.
We study two kinds of critical biharmonic systems,which involve multiple Rellich-type terms and strongly-coupled critical nonlinearities.Firstly,we investigate the minimizers of extremal function to the related best Sobolev constant.Secondly,under certain assumptions,we prove the existence of the nontrivial solutions by the Mountain-Pass Theorem of variational methods.The biharmonic systems in this paper are studied for the first time and the conclusions obtained are all new.
作者
康东升
田丹丹
马玉恒
曹玉平
KANG Dongsheng;TIAN Dandan;MA Yuheng;CAO Yuping(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074,China;Library, South-Central University for Nationalities, Wuhan 430074,China)
出处
《中南民族大学学报(自然科学版)》
CAS
2020年第2期210-214,共5页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(11601530)
中南民族大学研究生创新基金项目(3212020sycxjj305)。
关键词
临界双调和方程组
最佳Sobolev常数
达到函数对
变分法
critical biharmonic system
the best Sobolev constant
minimizer of extremal function
variational method