期刊文献+

改进的粒子群算法在故障定位中的研究 被引量:7

Research on Improved Particle Swarm Optimization Algorithm in Fault Location
下载PDF
导出
摘要 为了快速准确地定位电网故障,根据含分布式电源(Distributed Power,DG)的配电网与传统配网之间的异同点,建立含DG配电网故障定位的数学模型。文中重新构造用于含DG的配网故障定位评判函数,利用混沌理论对二进制粒子群算法(Binary Particle Swarm Optimization,BPSO)进行改进,并利用构造的含DG配电网案例验证了所提模型与算法的可行性与有效性。 In order to locate the grid fault quickly and accurately,according to the similarities and differences between the distribution network with distributed power(DG)and the traditional distribution network,the mathematical model of fault location in the distribution network with DG is established.In this paper,the evaluation function of distribution network fault location with DG is reconstructed,and the binary particle swarm optimization(BPSO)is improved by using chaos theory;the feasibility and effectiveness of the proposed model and algorithm are verified by using the distribution network with DG.
作者 段颖梨 刘鹏华 段小妹 DUAN Ying-li;LIU Peng-hua;DUAN Xiao-mei(Heilongjiang University of Science and Technology,School of Electrical and Control Engineering,Harbin 150000,China;State Grid Henan DC management Office,Zhengzhou 450000,China;State Grid Tangyin Power Supply Cpmpany,Tangy in 456150,China)
出处 《通信电源技术》 2020年第5期22-25,共4页 Telecom Power Technology
关键词 故障定位 粒子群算法 混沌理论 fault location particle swarm optimization chaos theory
  • 相关文献

参考文献3

二级参考文献34

  • 1Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[R]. Lausanne: Swiss Federal Institute of Technology Computer Engineering and Networks Laboratory, 2001.
  • 2Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi- objective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 3Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
  • 4Brockhoff D, Zitzler E. Are all objectives necessary? On dimensionality reduction in evolutionary multi-objective optimization[M]. Parallel Problem Solving from Nature- PPSN IX. Berlin: Springer Berlin Heidelberg, 2006: 533- 542.
  • 5Kennedy J. Particle swarm optimization[M]. Encyclopedia of Machine Learning. New York: Springer, 2010: 760-766.
  • 6Zhang Y, Gong D W, Geng N. Multi-objective optimization problems using cooperative evolvement particle swarm optimizer[J]. J of Computational and Theoretical Nanoscience, 2013, 10(3): 655-663.
  • 7Zhang Q, Li H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Trans on Evolutionary Computation, 2007, 11 (6): 712-731.
  • 8Hu P, Li R, Cao L L, et al. Multiple swarms multi-objective particle swarm optimization based on decomposition[J]. Procedia Engineering, 2011, 15: 3371-3375.
  • 9Elloumi W, Baklouti N, Abraham A, et al. The multi- objective hybridization of particle swarm optimization and fuzzy ant colony optimization[J]. J of Intelligent and Fuzzy Systems, 2014, 27(1): 515-525.
  • 10Pang S, Zou H, Yang W, et al. An adaptive mutated multi-objective particle swarm optimization with an entropy-based density assessment scheme[J]. Information & Computational Science, 2013, 4(10): 1065-1074.

共引文献75

同被引文献64

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部