期刊文献+

A new diagnosis strategy under the PMC model and applications

下载PDF
导出
摘要 A new diagnosis method, called Double-Syndrome diagnostic, is proposed, which can identify faulty nodes by comparing 2 different syndromes. For the same system, the average number of faulty nodes identified correctly by the Double-Syndrome diagnostic is much greater than the t-diagnosability and the(t_1/t_1)-diagnosability of the system. Furthermore, in order to identify the remaining faulty nodes in the system, two strategies of fault diagnostic are proposed, one is called(k, t)-fault diagnosable strategy, another is called(k, t/t)-fault diagnosable strategy. Besides, the conditional(k, t)-diagnosable((k, t/t)-diagnosable) system is introduced. Furthermore, the conditional diagnosabilities are proved for some regular(k, t)-diagnosable and(k, t/t)-diagnosable networks such as n-dimensional hypercube network and n-dimensional star network. And then, for a system, its(k,t)-conditional diagnosability and its(k, t/t)-conditional diagnosability are identical, and in the worst case, they are equal to their traditional conditional diagnosability.
作者 Liang Jiarong Chen Fang Zhang Qian 梁家荣;Chen Fang;Zhang Qian(School of Computer and Electronic Information,Guangxi University,Nanning 530004,P.R.China;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,P.R.China)
出处 《High Technology Letters》 EI CAS 2020年第1期34-43,共10页 高技术通讯(英文版)
基金 Supported by the National Natural Science Foundation of China(No.61862003,61761006) the Natural Science Foundation of Guangxi of China(No.2018GXNSFDA281052,2017GXNSFAA198263)。
  • 相关文献

参考文献2

二级参考文献20

  • 1[1]Efe K. A variation on the hypercube with lower diameter.IEEE Transactions on Computers, 1991,40(11) :1312~1316
  • 2[2]Cull P, Larson S M. The Mobius cubes. IEEE Transactions on Computers, 1995, 44(5): 647~659
  • 3[3]Efe K. The crossed cube architecture for Parallel Computing. IEEE Transactions on Parallel and Distributed Systems, 1992,3(5):513~524
  • 4[4]Efe K, Blachwell P K, Slough W, Shiau T. Topological properties of the crossed cube architecture. Parallel Computing,1994, 21(12):1763~1775
  • 5[5]Chang C-P, Sung T-Y, Hsu L-H. Edge congestion and topological properties of crossed cubes. IEEE Transactions on Computers, 2000, 11(1):63~80
  • 6[6]Kulasinghe P, Bettayeb S. Embedding binary trees into crossed cubes. IEEE Transactions on Computers, 1995, 44(7):923~929
  • 7[7]Kulasinghe P. Connectivity of the crossed cubes. Information Processing Letters, 1997, 61(4):222~226
  • 8[8]Fan J. Diagnosability of the Mobius cubes. IEEE Transactions on Parallel and Distributed Systems, 1998, 9(9):923~928
  • 9[9]Fan J. Hamilton-connectivity and cycle-embedding of the Mobius cubes. Information Processing Letters, 2002, 82(2):113~117
  • 10[10]Fan J. Diagnosability of Crossed cubes under the comparison diagnosis model. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(7) :687~692

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部