期刊文献+

基于谱-有限元法的SNERI地球模型固体潮形变计算

Deformation of the Solid Earth Tides for SNERI Earth Model Based on Spectral-Finite Element Method
下载PDF
导出
摘要 基于谱-有限元法计算一个球型、非自转、完全弹性、各向同性(SNERI)的地球固体潮形变,其中地球固体部分潮汐形变的弱解用哈密顿变分原理给出,液核部分的弱解采用静态中性分层的流体近似。计算过程中把SNERI地球进行等间距球层剖分,球面上对解函数和试探函数采用球谐展开,径向上采用线性插值。比较数值计算结果与同质地球模型的解析解结果得出,1km径向等距剖分即可获得10-8精度量级的低阶Love数。基于PREM地球模型的计算结果表明,谱-有限元法计算的固体潮2~3阶Love数与Runge-Kutta法的计算值差异在10-4量级;与武汉台超导重力仪8个主潮波的实测重力潮汐因子相比,本方法计算的理论重力潮汐因子相差平均约0.15%。研究结果说明,谱-有限元法具有较好的收敛性与较高的计算精度,比传统Runge-Kutta法更适用于高精度地计算复杂地球模型的固体潮形变。 This study presents the application of the spectral-finite element method on the solid tide response calculation of SNERI Earth.The weak formulations of Earth tide deformation equations are given respectively,by means of the Hamilton’s principle in the solid Earth and the approximation of neutral stratified fluid in the liquid core.The solution space is divided into a certain number of concentric spherical layers.Hence spherical harmonic functions are used to span the 2\|D spherical shell and linear functions are used to interpolate in the radius direction.Compared with the analytical solution of a homogeneous earth,the numerical solution shows that the numerical precision of spectral-finite element method can up to 10-8 magnitude in 1 km equal radial divided interval.As respect to the PREM Earth model,the numerical solution difference of 2nd and 3rd degree tide Love numbers between spectral-finite element method and Runge-Kutta mothed is at about 10-4 magnitude;the average difference of tidal gravimetric factor between the 8 main tidal waves observational results,recorded by superconducting gravity meter in Wuhan station,and theory results,calculated from spectral-finite method,is about 0.15%.The results show spectral-finite method has good convergence and high numerical precision and is more powerful in high precision numerical calculation of complex Earth tidal Love numbers.
作者 张惠康 徐建桥 廖彬彬 孙和平 陈晓东 周江存 ZHANG Huikang;XU Jianqiao;LIAO Binbin;SUN Heping;CHEN Xiaodong;ZHOU Jiangcun(State Key Laboratory of Geodesy and Earth’s Dynamics,Institute of Geodesy and Geophysics,CAS,340 Xudong Street,Wuhan 430077,China;University of Chinese Academy of Sciences,A19 Yuquan Road,Beijing 100049,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2020年第4期425-431,共7页 Journal of Geodesy and Geodynamics
基金 中国科学院战略先导研究专项-B类(XDPB11-02-03) 国家自然科学基金(41621091,41874094,41574072,41874026)。
关键词 谱-有限元法 SNERI地球模型 固体潮 PREM地球模型 Love数计算 spectral-finite element method SNERI Earth model Earth tide PREM Earth model Love number calculation
  • 相关文献

参考文献4

二级参考文献63

  • 1孙和平,许厚泽,周江存,陈晓东,徐建桥,周百力,郝兴华,刘明.武汉超导重力仪观测最新结果和海潮模型研究[J].地球物理学报,2005,48(2):299-307. 被引量:33
  • 2孙和平,B.Ducarme,许厚泽,L.Vandercoilden,徐建桥,周江存.基于全球超导重力仪观测研究海潮和固体潮模型的适定性[J].中国科学(D辑),2005,35(7):649-657. 被引量:28
  • 3李国营,彭龙辉,许厚泽.自转微椭、非均匀地球的潮汐变形[J].地球物理学报,1996,39(5):672-678. 被引量:14
  • 4许厚泽 毛伟健.中国大陆的海洋负荷潮汐改正模型[J].中国科学:B辑,1988,9:984-994.
  • 5Tamura Y. A harmonic development of the tidal generating potential. Bull. Inf. Markes Terrestres , 1981,99:6813-6855.
  • 6Xi Q. The precision of the development of tidal generating potential and some explanatory notes. Bull. Inf. Mar. , 1989,105:7396-7404.
  • 7Wahr J M. Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astr. Soc. ,1981,64:651-675.
  • 8Dehant V. Tidal parameters for an inelastic Earth. Phys. Earth Planet. Inter. ,1987,49:97-116.
  • 9Dehant V, Defraigne P, Wahr J. Tides for a convective Earth. J. Geophys. Res. ,1999,104(B10):1035-1058.
  • 10Mathews P M. Love numbers and gravimetric factor for diurnal tides. J. Geodetic Soc. Jpn. ,2001,46(4): 231-236.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部