期刊文献+

基于Bayes判别法的马尾松毛虫一代、二代幼虫发生期的预报 被引量:3

Forecast for the occurrence period of Dendrolimus punctatus larvae based on Bayes discriminant method for the first and second generations
下载PDF
导出
摘要 为了提高马尾松毛虫Dendrolimus punctatus(Walker)发生量预测预报结果的准确性,本文运用Bayes判别分析法建立安徽省潜山县1983年-2016年33年的马尾松毛虫一代和二代幼虫发生期的预报模型。一代幼虫发生期的判别函数方程为:f(1)=-15744.058-361.501x1+60.759x2+133.502x3+511.368x4;f(2)=-16854.938-375.596x1+70.405x2+132.608x3+529.690x4;f(3)=-17645.295-384.956x1+73.601x2+134.955x3+541.782x4;f(4)=-18179.639-382.408x1+71.342x2+135.234x3+549.655x4对1983年-2018年一代幼虫发生期预报结果历史符合率为97.06%,二代幼虫发生期的判别函数方程为:f(1)=-134898.483+559.235x5+113.112x6-250.033x7+1461.350x8;f(2)=-138908.622+573.572x5+118.340x6-252.691x7+1474.569x8;f(3)=-141430.680+577.358x5+125.727x6-254.610x7+1483.336x8;f(4)=-143185.175+578.968x5+129.628x6-256.102x7+1491.257x8对二代幼虫发生期的预报结果的历史符合率为100%。对2017年和2018年的验证回报,与实况结果一致。筛选出对预报量有密切关系的预报因子是本方法预报准确性的关键,该方法是一种简便准确性高的预报方法。 To improve the accuracy of forecasting the occurrence of Dendrolimus punctatus Walker,the Bayes discriminant analysis method was used to predict the occurrence period of the first and second generations of D.punctatus larvae over a period of 33 years from 1983 to 2016 in Qianshan county,Anhui province.The discriminant function equation of the occurrence period of the first-generation larvae was as followed:f(1)=-15744.058-361.501x1+60.759x2+133.502x3+511.368x4;f(2)=-16854.938-375.596x1+70.405x2+132.608x3+529.690x4;f(3)=-17645.295-384.956x1+73.601x2+134.955x3+541.782x4;f(4)=-18179.639-382.408x1+71.342x2+135.234x3+549.655x4.The historical coincidence rate of the forecast results from 1983 to 2018 was 97.06%.The discriminant function equation for the second-generation larvae was as followed:f(1)=-134898.483+559.235x5+113.112x6-250.033x7+1461.350x8;f(2)=-138908.622+573.572x5+118.340x6-252.691x7+1474.569x8;f(3)=-141430.680+577.358x5+125.727x6-254.610x7+1483.336x8;f(4)=-143185.175+578.968x5+129.628x6-256.102x7+1491.257x8.The historical coincidence rate of the forecast results for the second-generation larvae from 1983 to 2018 was 100%.The verification returns for 2017 and 2018 were consistent with the observed data.Screening out the forecasting factors closely related to the forecasting quantity was the key to the accuracy of forecast.This forecasting method is simple and accurate.
作者 钱广晶 张书平 宋学雨 毕守东 张国庆 邹运鼎 方国飞 闫萍 QIAN Guangjing;ZHANG Shuping;SONG Xueyu;BI Shoudong;ZHANG Guoqing;ZOU Yunding;FANG Guofei;YAN Ping(School of Science,Anhui Agricultural University,Hefei 230036,China;School of Forestry and Landscape Architecture,Anhui Agricultural University,Hefei 230036,China;Bureau of Forestry of Qianshan County,Anhui Province,Qianshan 246300,China;Station for Prevention and Control of Forest Disease and Pests,Shenyang 110034,China)
出处 《植物保护》 CAS CSCD 北大核心 2020年第2期122-128,163,共8页 Plant Protection
基金 国家林业公益性行业科研专项(201404410)。
关键词 马尾松毛虫幼虫 发生期 Bayes判别法 预报 Dendrolimus punctatus larvae period of occurrence the Bayes discriminant analysis forecast
  • 相关文献

参考文献10

二级参考文献184

共引文献122

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部