期刊文献+

基于多路双光模组的智能识别预警摄像机 被引量:2

Intelligent Detecting and Warning Camera Based on Multi-channel Double-spectrum Blocks
下载PDF
导出
摘要 为解决传统监控摄像机在超宽温野外环境下存在工作不稳定、可靠性差、智能化程度低、视场角小和全天候工作能力差等问题,提出一种基于嵌入式平台的多路可见光和红外双光模组融合拼接识别处理方法。嵌入式处理平台采用ARM+FPGA架构,集成于探测预警摄像机内部,智能探测识别摄像机前段监控场景中的威胁目标,并进行效果验证。结果表明:该摄像机集成度高、结构紧凑,能减轻监控系统终端视频处理的压力。 In order to solve the problems of general camera with unstable operation, poor reliability, low intelligence, small field of view, and poor all-weather working ability in the super wide temperature range field environment, a method of fusion, mosaic and recognition of multi-channel visible and infrared based on embed plat form is proposed. The embed platform adopting the construction of ARM + FPGA, integrated in the detection and early warning camera, realizes the intelligent detection and recognition of threat targets in the fore-end of monitor systems, and validate its effectiveness. Results show that the camera has high integration and compact construction, and reducing pressure of video processing of the terminal monitor center.
作者 田瑞娟 薛云波 金丰护 张振禹 Tian Ruijuan;Xue Yunbo;Jin Fenghu;Zhang Zhenyu(Department of Special Products,Automation Research Institute Co.,Ltd.of China South Industries Group Corporation,Mianyang 621000,China;Chengdu Tuying Video&Communication Technology Co.,Ltd.,Chengdu 610000,China;Department of Intelligent Manufacturing,Automation Research Institute Co.,Ltd.of China South Industries Group Corporation,Mianyang 621000,China)
出处 《兵工自动化》 2020年第4期21-22,34,共3页 Ordnance Industry Automation
关键词 双光融合 周界监控 智能识别 double-spectrum fusion boundary detection intelligent recognition
  • 相关文献

参考文献6

二级参考文献37

  • 1余静,游志胜.自动目标识别与跟踪技术研究综述[J].计算机应用研究,2005,22(1):12-15. 被引量:38
  • 2郁文贤,郭桂蓉.ATR的研究现状和发展趋势[J].系统工程与电子技术,1994,16(6):25-32. 被引量:12
  • 3吴樊,王超,张红,张波,张维胜.基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究[J].电子与信息学报,2006,28(4):587-591. 被引量:32
  • 4孙银黎.对深度学习的认识[J].绍兴文理学院学报,2007,27(11):34-36. 被引量:73
  • 5WANG X,TANG X.Dual-space linear discriminant analysis for face recognition[C]//CVPR 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE ?2004?2?564-569.
  • 6HEISELE B,HO P,POGGIO T.Face recognition with support vector machines:Global versus component-based approach[C]// ICCV 2001 Proceedings.Eighth IEEE International Conference on Computer Vision.Los Aiamitos:IEEE,2001,2:688-694.
  • 7ABATE A F,NAPPI M,RICCIO D,et al.2D and 3D face recognition a survey[J].Pattern Recognition Letters,2007,28(14):1885-1906.
  • 8NEFIAN A V,HAYES III M H.Hidden markov models for face recognition[C]//1998 IEEE International Conference on Acoustics*Speed and Signal Processing,Washington:IEEE,1998:2721-2724.
  • 9AHRANJANY S S,RAZZAZI F,GHASSEMIAN M H.A very high accuracy handwritten character recognition system for Farsi/Arabic digits using Convolutional Neural Networks[C]//Theories and Applications(BIC-TA),2010 IEEE Fifth International Conference on Bio-Inspired Computing.Beijing:IEEE,2010;1585-1592.
  • 10SYAFEEZA A R,KHALIL-HANI M,LIEW S S,et al.Convolutional neural network for face recognition with pose and Illumination Variation[J].International Journal of Engineering & Technology,2014,6(1):44-57.

共引文献80

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部