期刊文献+

具有B-D反应函数的交错扩散捕食模型中扩散的作用 被引量:1

Effect of Diffusion in Cross-Diffusion Predator Model with B-D Reaction Function
下载PDF
导出
摘要 研究了一类具有B-D反应函数的交错扩散捕食模型,利用常微分方程稳定性理论和积分不等式及拓扑度理论证明了交错扩散引起的正平衡点Turing失稳和交错扩散充分大时系统存在非常数正平衡解. A class of cross-diffusion prey-predator model with B-D reaction function is studied. By using the stability theory of ordinary differential equation and Topological method,it is proved that cross-diffusion coefficient leads to Turing instability and the cross-diffusion is sufficiently large,there is a positive non-constant equilibrium solution.
作者 柳文清 陈清婉 LIU Wengqing;CHEN Qingwan(College of General Education of Minnan Science and Technology Institute,Quanzhou 362300,China)
出处 《北华大学学报(自然科学版)》 CAS 2020年第2期141-146,共6页 Journal of Beihua University(Natural Science)
基金 泉州科技高层次人才创新创业项目(2018C094R) 福建省中青年教师教育科研项目(JAT191035,JAT191044).
关键词 B-D反应函数 交错扩散 Turing不稳定 非常数正平衡解 B-D reaction function cross-diffusion Turing instability extraordinary positive equilibrium solution
  • 相关文献

二级参考文献75

  • 1王育全,马军英.一类具HollingⅢ型功能反应的捕食者-食饵模型的定性分析(英文)[J].生物数学学报,2004,19(4):395-402. 被引量:12
  • 2伏升茂,温紫娟,宋雪梅.互惠Shigesada-Kawasaki-Teramoto模型整体解的存在性和稳定性[J].兰州大学学报(自然科学版),2006,42(4):121-126. 被引量:6
  • 3凌智,林支桂.三种群互惠模型抛物系统解的整体存在与爆破[J].生物数学学报,2007,22(2):209-214. 被引量:7
  • 4Huang X,Wang Y,Zhu L. One and three limit cycles in a cubic predator-prey system [J]. Math. Meth. Appl. Sci. ,2007,30(5):501-511.
  • 5Cao Huaihuo, Fu Shengmao. Stability in a cubic predator-prey diffusive system[J]. Journal of Lanzhou university(Natural sciences) ,2008,44(4) : 135-138.
  • 6Shigesada N, Kawasaki K,Teramoto E. Spatial segregation of interacting species[J]. J. Theoretical Biology, 1979,79: 83-99.
  • 7Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion[J]. J. Differential Equations, 2004,197 : 293-314.
  • 8Dubey B, Hussain B. A predator-prey interaction model with self and cross-diffusion[J]. Ecological Modelling, 2001,141 : 67-76.
  • 9Fu Shengmao, Gao Haiyan,Cui Shangbin. On global solutions of competitor-competitor-mutualist model with cross-diffusion[J]. Aeta Mathematiea Siniea, Chinese Series, 2008,51 (1) : 153-163.
  • 10Choi Y S,Roger Lui, Yoshio Yamada. Existence of global solutions for the shigesada-kawasakiteramoto model with strongly coupled cross-diffusion[J]. Discreate and Continuous Dynamical Systems, 2004,10 (3) :719-730.

共引文献11

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部