期刊文献+

基于CT的深度学习模型在甲状腺结节良恶性鉴别中的应用 被引量:4

Study on deep learing model based on CT in the differential diagnosis of benign and malignant thyroid nodules
下载PDF
导出
摘要 目的:构建和验证一个用于CT自动识别甲状腺结节的深度学习模型,旨在提高CT医师对甲状腺结节的诊断水平。方法:从医院数据库中选取经手术病理证实的甲状腺结节患者672例,选取330例(其中恶性280例,良性病变50例)用于深度学习模型的训练,余342例用于模型验证,同时再由3名不同年资的CT医师进行诊断,并统计相关结果。结果:深度学习模型用于甲状腺结节的诊断准确率91.8%、敏感度84.5%、特异度87.8%,每例诊断时间为(0.30±0.02)s,均优于3名医师(均P<0.05)。结论:深度学习模型用于甲状腺结节的诊断具有较高的准确率、特异度和敏感度,可辅助CT医师实时诊断甲状腺结节。 Objective:To construct and validate a deep learning model for automatic recognition of thyroid nodules on CT,aiming in improving the level of recognition and diagnosis of thyroid nodules on CT.Methods:672 patients with thyroid nodules confirmed by surgery and pathology were selected from hospital database.330 cases(including 280 malignant cases and 50 benign cases)were selected for the training of the deep learning model.Then the remaining 342 cases were used to validate the model,and three radiologists with different seniority were assigned to diagnose the disease.Finally,the relevant results were counted.Results:The accuracy,sensitivity and specificity of the deep learning model for thyroid nodules were 91.8%,84.5%and 87.8%,respectively.The diagnostic time of each patient was(0.30±0.02)s,which was better than that of the three doctors.Conclusions:The deep learning model constructed in this study has high accuracy,specificity and sensitivity in the diagnosis of thyroid nodules,and can assist CT physicians in real-time diagnosis of thyroid nodules.
作者 王洪杰 于霞 张鸣 张恩东 Wang Hongjie;Yu Xia;Zhang Ming;Zhang Endong(不详;Otolaryngology Head and Neck Surgery,Weihai Maternal and Child Health Hospital,Weihai 264200,China)
出处 《中国中西医结合影像学杂志》 2020年第2期195-197,共3页 Chinese Imaging Journal of Integrated Traditional and Western Medicine
基金 山东省医药卫生科技发展计划项目(2018WS111)。
关键词 甲状腺结节 人工智能 诊断 鉴别 体层摄影术 X线计算机 Thyroid nodule Artificial intelligence Diagnosis differential Tomography X-ray computed
  • 相关文献

参考文献11

二级参考文献44

  • 1无,吴云林.上海不同等级10个医疗机构早期胃癌的筛选结果比较[J].中华消化内镜杂志,2007,24(1):19-22. 被引量:85
  • 2Eloubeidi MA, Jhala D, Chhieng DC, et al. Yield of endoscopic ultrasound-guided fine-needle aspiration biopsy in patients with suspected pancreatic carcinoma. Cancer, 2003,99:285-292.
  • 3Harewood GC, Wieersema MJ. Endosonography-guided fine needle aspiration biopsy in the evaluation of pancreatic magses. Am J Gastroenterol, 2002,97 : 1386-1391.
  • 4Varadarajulu S ,Tamhane A, Eloubeidi MA. Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointest Endosc ,2005 ,62 :728-736.
  • 5Fritscher-Ravens A, Brand L, Knofel WT, et al. Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pan creatic lesions in patients with normal parenchyma and chronic pancreatitis. Am J Gastroenterol, 2002,97:2768-2775.
  • 6Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. Clin Radiol, 2004 ; 59 : 1061-1069.
  • 7Simon H.神经网络原理.北京机械工业出版社,2004:229-252.
  • 8Loren DE, Seghal CM, Ginsberg GG, et al. Computer-assisted analysis of lymph nodes detected by EUS in patients with esophageal carcinoma. Gastrointest Endosc, 2002, 56:742-746.
  • 9Norton ID, Zheng Y, Wiersema MS, et al. Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis. Gastrointest Endosc, 2001,54:625-629.
  • 10赵建民,朱信忠,殷建平,等.基于特征提取和BP神经网络相结合的车牌字符识别技术[J].全国理论计算机科学学术年会,2005(8):1-4.

共引文献721

同被引文献62

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部