摘要
大量电动汽车接入给配网台区负荷带来了巨大的影响,为了更好地进行配电台区的负荷调度和扩容规划,研究计及电动汽车渗透率的台区负荷预测。首先对多源的负荷预测数据进行缺失、重复、异常预处理并对处理后的数据进行负荷聚类分析;然后分析电动汽车渗透率对台区负荷的影响并建立相应的负荷预测模型;接着建立基于ANFIS-RBF算法的台区负荷预测算法,并采用某地实际模型和数据进行台区负荷预测实例仿真,分析不同电动汽车渗透率下的台区负荷预测结果并验证本文所提算法的优越性。
The access of a large number of electric vehicles has a huge impact on the transformer area of the distribution network.And in order to better carry out the load dispatching and expansion planning in the distribution area,the load forecast of the transformer area considering the penetration rate of electric vehicles is studied.Firstly,the multi-source load forecasting data is subjected to the missing,repeated,abnormal pre-processing and the load clustering analyses is performed on the processed data.And the influence of electric vehicle permeability on the transformer area load is analyzed and the corresponding load forecasting model is established.Furthermore,the load forecasting algorithm based on ANFISRBF algorithm is established,and the actual load model of the load forecasting is simulated by using the actual model and data of a certain area.The load prediction result of the transformer area under different electric vehicle permeabilities is analyzed to verify the superiority of the proposed algorithm.
作者
刘云
吴家宏
LIU Yun;WU Jiahong(Nanjing Sifang E-Power Automation Co.,Ltd.,Nanjing 211199,Jiangsu,China;Beijing Sifang Automation Co.,Ltd.,Beijing 100010,China)
出处
《电网与清洁能源》
2020年第1期72-78,共7页
Power System and Clean Energy
基金
国家重点研发计划(2016YFB0900500)。
关键词
电动汽车
配网台区
负荷预测
模糊神经网络
数据处理
electric vehicles
distribution network transformer area
load forecasting
fuzzy neural network
data processing