期刊文献+

基于深度卷积神经网络的红细胞识别算法研究

Research on red blood cell recognition algorithm based on deep convolutional neural network
下载PDF
导出
摘要 针对深度研究的项目特点,文章对卷积神经网络结构的研究现状进行分析,总结卷积神经网络结构及优化算法。旨在通过对这些内容的分析,针对红细胞图像提取特征,设计群优化算法的卷积神经网络结构,以提高图像检测的科学性、准确性,展现深度卷积神经网络的识别算法技术的使用价值。 According to the characteristics of in-depth research projects, the research status of convolutional neural network structure is analyzed in this paper, and the structure and optimization algorithm of convolutional neural network are summarized. The purpose of this paper is to analyze the content and extract the features of the red blood cell image, and design the convolutional neural network structure of the group optimization algorithm to improve the scientificity and accuracy of image detection and show the value of the recognition algorithm technology of deep convolutional neural network.
作者 钟彩 彭春富 杜微 杨兴耀 Zhong Cai;Peng Chunfu;Du Wei;Yang Xingyao(Changde Vocational Technical College,Changde 415000,China)
出处 《无线互联科技》 2020年第5期17-18,33,共3页 Wireless Internet Technology
基金 2018年湖南省教育厅科研项目(湘教通〔2019〕90号),项目名称:基于深度学习的红细胞检测技术研究,项目编号:18C1225。
关键词 卷积神经网络 识别算法 深度研究 convolutional neural network recognition algorithm in-depth research
  • 相关文献

参考文献6

二级参考文献45

  • 1Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8) : 1798-1828.
  • 2Zhao Zeng-shun, Zhang Li, Zhao Meng, et al. Gabor face recog- nition by multi-channel classifier fusion of supervised kernel manifold learning[J]. Neuro-computing, 2012,97:398-404.
  • 3Ji S, Xu W, Yang M, et at. 3D convolutional neural networks forhuman action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 (1) : 221-231.
  • 4Mobahi, Hossein,Collobert R, et al. Deep learning from tempo- ral coherence in video[C]//Proceedings of the 26th Annual In- ternational Conference on Machine Learning. ACM, 2009:737- 744.
  • 5Karpathy, Andrej, et al. Large-scale video classification with convolutional neural networks[C]//IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). 2014.
  • 6Memisevic R. Learning to relate images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8) : 1829-1846.
  • 7Pollock D S G. Circulant matrices and time-series analysis[J].International Journal of Mathematical Education in Science and Technology, 2002,33 (2) : 213-230.
  • 8Taylor G W, Fergus R, Lecun Y, et al. Convolutional learning of spatio-temporal features[M]//Computer Vision-ECCV 2010. Springer, 2010 : 140-153.
  • 9Le Q V, Zou W Y, Yeung S Y, et al. Learning hierarchical inva- riant spatio-temporal features for action recognition with inde- pendent subspace analysis[C]//2011 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). IEEE, 2011: 3361-3368.
  • 10Bregonzio M, Xiang T, Gong S. Fusing appearance and distribu- tion information of interest points for action recognition[J]. Pat- tern Recognition, 2012,45 (3) : 1220-1234.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部