摘要
针对深度研究的项目特点,文章对卷积神经网络结构的研究现状进行分析,总结卷积神经网络结构及优化算法。旨在通过对这些内容的分析,针对红细胞图像提取特征,设计群优化算法的卷积神经网络结构,以提高图像检测的科学性、准确性,展现深度卷积神经网络的识别算法技术的使用价值。
According to the characteristics of in-depth research projects, the research status of convolutional neural network structure is analyzed in this paper, and the structure and optimization algorithm of convolutional neural network are summarized. The purpose of this paper is to analyze the content and extract the features of the red blood cell image, and design the convolutional neural network structure of the group optimization algorithm to improve the scientificity and accuracy of image detection and show the value of the recognition algorithm technology of deep convolutional neural network.
作者
钟彩
彭春富
杜微
杨兴耀
Zhong Cai;Peng Chunfu;Du Wei;Yang Xingyao(Changde Vocational Technical College,Changde 415000,China)
出处
《无线互联科技》
2020年第5期17-18,33,共3页
Wireless Internet Technology
基金
2018年湖南省教育厅科研项目(湘教通〔2019〕90号),项目名称:基于深度学习的红细胞检测技术研究,项目编号:18C1225。
关键词
卷积神经网络
识别算法
深度研究
convolutional neural network
recognition algorithm
in-depth research