摘要
对比研究了微波功率、作用时间及物料质量对辉钼矿预活化焙烧后的脱硫效果的影响,并采用气-固多相反应的未反应收缩核模型研究了辉钼矿氧化焙烧的动力学。结果表明,辉钼矿的吸波性能良好,在微波功率0.64 k W、物料质量30 g、微波作用6 min的条件下,微波可比常规处理方式显著降低硫含量0.256%;辉钼矿氧化焙烧是强放热反应,温度越高,辉钼矿氧化速率越快;540~630℃时转化率明显增高,界面化学反应是控制性环节。微波对于辉钼矿在常规氧化焙烧之前的活化作用已得到试验验证,若应用于工业生产,可采用短时间活化焙烧预处理来辅助常规的氧化焙烧。
Effect of microwave power,irradiation time and mass quantity on molybdenite activation desulfurization after microwave-activated pre-calcination treatment was studied;unreacted shrinkage nucleus model of gas-solid heterogeneous reaction was adopted to study reaction kinetics.Results show that molybdenite concentrate can absorb microwave well,and optimum desulfurization effect is obtained with 0.64 k W microwave irradiation of 30 g molybdenite for 6 min,and the relative sulphur content was reduced by 65.47%in contrast with traditional oxidizing roasting;the oxidation of molybdenite is a highly exothermic reaction with a faster oxidation rate at higher temperatures;the conversion rate is obviously increased at 540~630°C with interfacial chemical reaction as a rate controlling step.The effect of microwave activation prior to conventional oxidative roasting was tested and verified.As for industrial applications,a short-time activated calcination pretreatment can be used to assist conventional oxidative roasting.
作者
王苗
杨双平
郭栓全
曹栓伟
何凯
Wang Miao;Yang Shuangping;Guo Shuanquan;Cao Shuanwei;He Kai(Xi’an University of Architecture and Technology,Xi’an 710055,China;Research Center of Metallurgical Engineering and Technology of Shaanxi Province,Xi’an 710055,China;Jinduicheng Molybdenum Co.,Ltd,Xi’an 710077,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2020年第1期48-58,共11页
Rare Metal Materials and Engineering
基金
Shaanxi Science and Technology Coordination Innovation Project Plan(2015KTZDGY09-01)
Shaanxi Provincial Department of Education Special Scientific Research Project(17JK0439)
Xi’an University of Architecture and Technology Youth Science and Technology Fund(QN1316)。
关键词
辉钼矿
微波活化
预活化焙烧
低硫氧化钼
未反应核模型
molybdenite
microwave activation
activated pre-calcination
low-sulphur molybdenum oxide
unreacted shrinkage nucleus model