期刊文献+

FeSO4水溶液超薄液层电沉积物的形貌选择及其磁性研究 被引量:1

Pattern Selection and the Magnetic Property of Electrodeposits Grown within a Ultrathin FeSO4 Solution Layer
原文传递
导出
摘要 利用FeSO4水溶液进行超薄液层电沉积实验研究,重点考察沉积物的形貌选择及其磁性特征。在较大的沉积电流条件下,可获得纳米量级厚度的纤维状电沉积物;而在较小的沉积电流条件下,获得的薄膜状电沉积物的厚度达到了亚微米量级。在此基础上,利用磁力显微镜检测具有不同形貌的Fe的电沉积物经自发磁化以及经不同外加恒稳磁场磁化后所形成的表面杂散磁场分布,以此推断磁畴在样品中的分布规律。最后,利用交变梯度磁强计检测所得电沉积物的磁性特征,所得实验结果表明样品的易磁化轴位于电沉积物生长所在平面,不同方向饱和磁化强度的大小取决于样品的生长方向、几何尺寸及其形貌特征。 Through the ultrathin FeSO4 solution layer electrodeposition process,the iron electrodeposits with the filament or the film like morphology grown under different electrodeposition currents were obtained.Compared with the Fe filaments with nanometer thickness formed under the higher electrodeposition current,the film like electrodeposit formed under the lower electrodeposition current presented the sub-micron thickness.Further,based on the magnetic force microscopy(MFM),we measured the distribution of the stray magnetic field around the electrodeposits with different morphology,which is resulted from the magnetic domains formed in the electrodeposits through the self-assembled process or the magnetization process under applied static magnetic field.Finally,the magnetic property of samples was measured with the alternating gradient magnetometer(AGM).The obtained hysteresis loops present that the ease axis is located in the plane of the electrodeposits growth,and the saturation magnetization at different directions should be determined by the growth direction,the geometry,and the morphological characteristics of electrodeposits.
作者 于光伟 刘宏 王继扬 Yu Guangwei;Liu Hong;Wang Jiyang(State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2020年第1期209-215,共7页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50802055)。
关键词 FeSO4水溶液 超薄液层电沉积 形貌选择 磁性 FeSO4 aqueous solution ultrathin electrolyte layer deposition pattern selection magnetic property
  • 相关文献

参考文献3

二级参考文献14

  • 1郦剑,李昆仑,倪兆荣,朱流.纳米线研究进展[J].材料科学与工程学报,2005,23(2):290-292. 被引量:8
  • 2Qunadjela K,Ferre R,Lounil L,et al.Magnetization reversal in cobalt and nickel electrodeposited nanowire[J].J Applied Phys,1997,81(8):54-55.
  • 3Zeng H,Skomski R,Menon L,et al.Structure and magnetic properties of ferromagnetic nanowires in self assembled arrays[J].J Phys Rev B,2002,65:134426.
  • 4Sellmyer D J,Zheng M,Skomski R.Magnetism of Fe,Co and Ni nanowire in selt-assembled arrays[J].J Phys Condens Matter,2001,13:433.
  • 5冯端,翟洪如.金属物理学-磁性[M].北京:科学出版社,1998.
  • 6Jacob I S,Bean C P Magnetization reversal analysis[J].Phys Rev,1955,100:1 060.
  • 7Gonzalez J M,Chubykalo-Fesenko O,Romero J J,et al.Nanostructured Magnetic Materials[J].AIP conference proceedings,2005,765:157-170.
  • 8Banerjee S,Dan A,Chakravorty D.Review Synthesis of conducting nanowires[J].Journal of Materials Science,2002,37(20):4 261-4 271.
  • 9Qunadjela K,Ferre R,Lounil L,et a1.Magnetization reversal in cobalt and nickel electrodeposited nanowire[].Journal of Applied Physics.1997
  • 10Wei M S,Chou S Y.Sine Effects on Switching Field of Iso-lated and Interactive Array of Nanoscale Single-domain Ni Bars Fabricated Using Electron-beam Nanolithography[].Journal of Applied Physics.1994

共引文献2

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部