期刊文献+

3D目标检测进展综述 被引量:14

Advances in 3D Object Detection:A Brief Survey
下载PDF
导出
摘要 目标检测算法应用广泛,一直是计算机视觉领域备受关注的研究热点。近年来,随着深度学习的发展,3D图像的目标检测研究取得了巨大的突破。与2D目标检测相比,3D目标检测结合了深度信息,能够提供目标的位置、方向和大小等空间场景信息,在自动驾驶和机器人领域发展迅速。文中首先对基于深度学习的2D目标检测算法进行概述;其次根据图像、激光雷达、多传感器等不同数据采集方式,分析目前具有代表性和开创性的3D目标检测算法;结合自动驾驶的应用场景,对比分析不同3D目标检测算法的性能、优势和局限性;最后总结了3D目标检测的应用意义以及待解决的问题,并对3D目标检测的发展方向和新的挑战进行了讨论和展望。 Object detection is useful in many application scenarios,and is one of the most important research topics in computer vision.In recent years,with the development of deep learning,3D object detection has achieved significant breakthrough.Compared with 2D object detection,3D object detection can provide space scene information such as location,orientation and size of interest object,which plays an important role in autonomous driving and robot research.This paper firstly summarized deep lear-ning-based 2D object detection,then reviewed recent novel 3D object detection algorithms based on different data type of image,point cloud and multi-sensors,and analyzd performances,advantages and limitations of typical 3D object detection algorithms in autonomous driving scenario.Finally,this paper summarized the application direction and research topics and challenges of 3D object detection.
作者 张鹏 宋一凡 宗立波 刘立波 ZHANG Peng;SONG Yi-fan;ZONG Li-bo;LIU Li-bo(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处 《计算机科学》 CSCD 北大核心 2020年第4期94-102,共9页 Computer Science
基金 西部一流大学科研创新项目(ZKZD2017005) 宁夏回族自治区重点研发项目(2018BBF02006) 国家自然科学基金(61862050)。
关键词 深度学习 计算机视觉 目标检测 Deep learning Computer vision Object detection
  • 相关文献

参考文献4

二级参考文献27

  • 1Belongie S,Malik J, Puzicha J. Shape matching andobject recognition using shape contexts [J]. IEEETransactions on Pattern Analysis and MachineIntelligence (S0162-8828), 2002, 24(4): 509-522.
  • 2Leung T, Malik J. Representing and recognizing thevisual appearance of materials using three-dimensionaltextons [J]. International Journal of Computer Vision(S0920-5691), 2001, 43(1): 29-44.
  • 3Bo L, Ren X, Fox D. Depth kernel descriptors for objectrecognition [C]// Proceedings of Intelligent Robots andSystems (IROS),2011 IEEE. France: IEEE, 2011:821-826.
  • 4Cheng Y, Cai R,Zhao X,et al.Convolutional fisherkernels for rgb-d object recognition [C]// Proceedings of2015 International Conference on 3D Vision (3DV).France: IEEE, 2015: 135-143.
  • 5Song S, Xiao J. Deep Sliding Shapes for Amodal 3DObject Detection in RGB-D Images [J]. arXiv preprintarXiv: 1511.02300, 2015.
  • 6Gupta S, Girshick R, Arbelaez P, et al. Learning richfeatures from RGB-D images for object detection andsegmentation [M]// Computer Vision-ECCV 2014.Zurich, Switzerland: Springer, 2014: 345-360.
  • 7Girshick R,Donahue J, Darrell T, et al. Rich featurehierarchies for accurate object detection and semanticsegmentation [C]// Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition. Columbus,USA: IEEE, 2014: 580-587.
  • 8Girshick R. Fast r-cnn [C]// Proceedings of the IEEEInternational Conference on Computer Vision. 2015:1440-1448,Santiago, Chile. USA: IEEE, 2015: 91-99.
  • 9Ren S,He K,Girshick R,et al. Faster R-CNN: Towardsreal-time object detection with region proposal networks[C]// Advances in Neural Information ProcessingSystems. Quebec, Canada: NIPS, 2015: 91-99.
  • 10LeCun Y, Bottou L, Bengio Y,et al. Gradient-basedlearning applied to document recognition [J].Proceedings of the IEEE (S0018-9219), 1998, 86(11):2278-2324.

共引文献38

同被引文献79

引证文献14

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部