期刊文献+

一种基于脑电信号的眼动方向分类方法 被引量:1

Approach to Classification of Eye Movement Directions Based on EEG Signal
下载PDF
导出
摘要 为了提高基于眼电的眼动方向的识别准确性,文中利用包含眼电伪迹的脑电信号,提出了一种新的眼动方向分类方法。首先,在10-20国际标准导联配置下,通过脑电仪采集靠近人脑额叶处的AF7,F7,FT7,T7,AF8,F8,FT8,T8这8个通道的脑电信号;然后,通过基线移除、归一化、最小二乘法降噪等进行数据预处理;最后,采用支持向量机的方法进行眼动方向的多次二分类,并使用投票策略实现眼动方向的四分类识别。实验结果表明,所提方法进行眼动方向分类时,在上、下、左、右4个方向上的分类率分别达到了78.47%,72.22%,84.03%,79.86%,平均分类率达到了78.65%。与已有的分类方法相比,所提方法的分类准确率更高,分类算法的实现过程更简单,这进一步验证了利用脑电信号识别眼动方向的可行性和有效性。 In order to improve the accuracy of eye movement directions identification based on electro-oculogram(EOG)signals,this paper utilized the electrooculogram(EEG)signals containing EOG artifacts and proposed a new approach to classify eye movement directions.Firstly,EEG signals from the 8 channels in the frontal lobe of the human brain are collected,and EEG data pre-processing is made,including data normalization and least squares based denoising.Then support vector machine based method is applied to perform multiple binary-classification,and finally voting strategy is used to solve four-classification problems,thus achieving eye movement directions identification.The experiment results show when using the approach of this paper to classify eye movement directions,the classification accuracy rates in the upper,lower,left and right directions are 78.47%,72.22%,84.03%,79.86%respectively,and the average classification accuracy rates reach 78.65%.In addition,compared with the existed classification methods,the classification accuracy rate of this paper is higher,and the classification algorithm is simpler.It is validated the feasibility and effectiveness of using EEG signals to identify eye movement directions.
作者 程时伟 陈一健 徐静如 张柳新 吴剑锋 孙凌云 CHENG Shi-wei;CHEN Yi-jian;XU Jing-ru;ZHANG Liu-xin;WU Jian-feng;SUN Ling-yun(School of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;Lenovo Research,Beijing 100085,China;Institute of Industrial Design,Zhejiang University of Technology,Hangzhou 310023,China;State Key Lab of CAD&CG,Zhejiang University,Hangzhou 310027,China)
出处 《计算机科学》 CSCD 北大核心 2020年第4期112-118,共7页 Computer Science
基金 国家重点研发计划课题(2016YFB1001403) 国家自然科学基金(61772468,61672451)。
关键词 脑机接口 脑电 眼动跟踪 眼电 人机交互 Brain-computer interface Electroencephalogram Eye tracking Electro-oculogram Human-computer interaction
  • 相关文献

参考文献3

二级参考文献25

  • 1Pfurtseheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans[J]. Neuroscience Letters, 1997, 239:65 - 68.
  • 2Currana E A,Stokesa B M J. Learning to eontrol brain activity:A review of the production and control of EEG components for driving brain - computer interface ( BCI ) systems [ J ]. Brain and cognition,2003,51 (3) :326 -336.
  • 3Pfurtscheller G,Aranibar A. Event - related cortical desynchronizafion detected by power measurements of scalp EEG [J ]. Electroencephalography and Clinical Neurophysiology, 1977,42(8) :817 - 826.
  • 4Pfurtschdler G,Neuper C. Motor Imagery and Direct Brain- Computer Communication[J]. Proceedings of IEEE, 2001,89 (7) :1123 - 1134.
  • 5Peters B O,Pfurtschdler G, Flyvbjerg H. Automatic differentiation of multichannel EEG signals[J]. IEEE Tram BME, 2001,48(1) :111 - 116.
  • 6Domhege G,Blartkertz B,Curio G, et al. Boosting bit rates in noninvasive EEG singletrial classification by feature combination and paradigm[J ]. IEEE Tran. Biomed. Eng., 2004, 51 : 993 - 1002.
  • 7Fukunaga K. Introduction to statistical pattern recognition [ M]. second ed. Boston: Academic Press, 1990.
  • 8Muller - Gerking J, Pfurtscller G, Hyvbjerg H. Designing optimal spatial filters for single - trial EEG classification in a movement task[ J ]. Electroenc. Clin. Neurophys, 1999 ( 5 ) : 787 - 798.
  • 9EOG Artifact Correction from EEG Recording Using Sta- tionary Subspace Analysis and Empirical Mode Decomposition [J]. Sensors,2013,11 (13) : 14839-14859.
  • 10Ghaheri H, Ahmadyfard A R. Extracting Common Spatial Patterns from EEG Time Segments for Classifying Motor Imagery Classes in a Brain Computer Interface (BCI) [ J ]. Seientia Iraniea D, 2013,20(6) :2061-2072.Neuroeomputing, 2015,159 : 186-196.

共引文献2289

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部