期刊文献+

上流式反应器中气体分散性能的研究

GAS-LIQUID DISPERSION PERFORMANCE IN AN UP-FLOW REACTOR
下载PDF
导出
摘要 在冷模试验装置中,以带圆柱形上升管的多孔板气液分布器为对象,考察了表观气速、轴向高度、上升管直径、固体颗粒形状对气含率分布的影响。结果表明,该气液分布器产生的初始气泡尺寸较大,多为毫米级气泡;气速越大,轴向位置越高,局部气含率的径向分布越不均匀;上升管直径为26 mm的气液分布器的气体分散性能优于上升管直径为48 mm的气液分布器;球形、齿球形和三叶草形固体颗粒对气泡均有破碎作用,且三叶草形固体颗粒破碎效果优于球形固体颗粒,使用三叶草形固体颗粒的填料层上方气含率分布偏差最小。 The effect of apparent gas velocity,axial height,diameter of riser and shape of solid particles on gas holdup distribution was investigated in cold mold test equipment with perforated plate gas-liquid distributor with cylindrical riser.The results showed that the initial bubble size generated by the gas-liquid distributor was large,mostly millimeter-scale bubbles.The uniformity of the gas holdup distribution became worse with the increase of gas velocity and the axial height.The gas dispersion performance of the gas-liquid distributor with a riser diameter of 26 mm is better than the gas-liquid distributor with a riser diameter of 48 mm.The ceramic ball,tooth spherical and clover-shaped particle all had a breakup effect on the bubble,and the breakup effect of the clover-shaped particle is better than ceramic ball and tooth spherical particle.The unevenness distribution of gas hold above the filler layer using clover-shaped solid particles is the smallest.
作者 马守涛 赵秀文 相春娥 黄正梁 Ma Shoutao;Zhao Xiuwen;Xiang Chune;Huang Zhengliang(PetroChina Daqing Chemical Research Center,Daqing,Heilongjiang 163714;PetroChina East China Design Institute Corporation;Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology)
出处 《石油炼制与化工》 CAS CSCD 北大核心 2020年第4期64-68,共5页 Petroleum Processing and Petrochemicals
基金 中国石油天然气股份有限公司合同项目(LH-17-08-56-02)。
关键词 上流式反应器 冷模 气液分布器 固体颗粒 气含率分布 up-flow reactor cold mold gas-liquid distributor solid particle gas holdup distribution
  • 相关文献

参考文献6

二级参考文献29

  • 1姜绍通,潘丽军,马道荣.膨胀床的膨胀特性和液体混合研究[J].农业机械学报,2004,35(5):140-142. 被引量:4
  • 2张进明,吕砚山.微机化气泡参数自动测量系统[J].北京化工学院学报,1990,17(2):60-65. 被引量:1
  • 3R. Brahem,A. Royon-Lebeaud,D. Legendre,M. Moreaud,L. Duval.Experimental hydrodynamic study of valve trays[J].Chemical Engineering Science.2013
  • 4M. Martínez,J. Pallares,J. López,A. López,F. Albertos,M.A. García,I. Cuesta,F.X. Grau.Numerical simulation of the liquid distribution in a trickle-bed reactor[J].Chemical Engineering Science.2012
  • 5Arnab Atta,Shantanu Roy,Krishna D.P. Nigam.Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD[J].Chemical Engineering Science.2007(24)
  • 6C. Boyer,A. Koudil,P. Chen,M.P. Dudukovic.Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation[J].Chemical Engineering Science.2005(22)
  • 7O.M. Aamo,G.O. Eikrem,H.B. Siahaan,B.A. Foss.Observer design for multiphase flow in vertical pipes with gas-lift––theory and experiments[J].Journal of Process Control.2004(3)
  • 8Ludovic Raynal,Isabelle Harter.Studies of gas–liquid flow through reactors internals using VOF simulations[J].Chemical Engineering Science.2001(21)
  • 9R. Krishna,J.M. Van Baten,J. Ellenberger,A.P. Higler,R. Taylor.CFD Simulations of Sieve Tray Hydrodynamics[J].Chemical Engineering Research and Design.1999(7)
  • 10MONTAGNA A, SHAH Y. Backmixing effect in an up-flow cocurrent hydrodesuKurization reactor [ J ]. TheChemical Engineering Journal, 1975, 10( 1) : 99-105.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部