摘要
研究基尔霍夫型方程a+λ∫R N|▽u|2+V(x)u 2[-Δu+V(x)u]=K(x)f(u),in R N,其中N≥3,a>1,λ≥0是一个参数,并且f(t)在无穷远处是渐近线性的.通过变分的方法,在对K(x)作出适当的假设下可以得到方程的非平凡解的存在性.利用截断函数得到有界的PS序列.
In this paper,we study the following Kirchhoff type equation a+λ∫R N|▽u|2+V(x)u 2[-Δu+V(x)u]=K(x)f(u),in R N,where N≥3,a>1,λ≥0 is a parameter,and f(t)is asymptotically linear at infinity.By using variational methods,we obtain the existence of nontrivial solutions under appropriate assumptions on K(x).A cut-off functional is utilized to obtain the bounded Palais-Smale sequences.
作者
张雪
孙燕
栾世霞
ZHANG Xue;SUN Yan;LUAN Shixia(School of Mathematical Sciences,Qufu Normal University,273165,Qufu;Primary School of Gaomi Chongxian,261500,Gaomi,Shandong,PRC)
出处
《曲阜师范大学学报(自然科学版)》
CAS
2020年第2期19-25,共7页
Journal of Qufu Normal University(Natural Science)
关键词
基尔霍夫型方程
渐近线性
截断函数
变分方法
Kirchhoff type equation
asymptotically linear
cut-off functional
variational methods