期刊文献+

渐近线性基尔霍夫型方程的解的存在性

Existence of solutions for asymptotically linear Kirchhoff equations
下载PDF
导出
摘要 研究基尔霍夫型方程a+λ∫R N|▽u|2+V(x)u 2[-Δu+V(x)u]=K(x)f(u),in R N,其中N≥3,a>1,λ≥0是一个参数,并且f(t)在无穷远处是渐近线性的.通过变分的方法,在对K(x)作出适当的假设下可以得到方程的非平凡解的存在性.利用截断函数得到有界的PS序列. In this paper,we study the following Kirchhoff type equation a+λ∫R N|▽u|2+V(x)u 2[-Δu+V(x)u]=K(x)f(u),in R N,where N≥3,a>1,λ≥0 is a parameter,and f(t)is asymptotically linear at infinity.By using variational methods,we obtain the existence of nontrivial solutions under appropriate assumptions on K(x).A cut-off functional is utilized to obtain the bounded Palais-Smale sequences.
作者 张雪 孙燕 栾世霞 ZHANG Xue;SUN Yan;LUAN Shixia(School of Mathematical Sciences,Qufu Normal University,273165,Qufu;Primary School of Gaomi Chongxian,261500,Gaomi,Shandong,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2020年第2期19-25,共7页 Journal of Qufu Normal University(Natural Science)
关键词 基尔霍夫型方程 渐近线性 截断函数 变分方法 Kirchhoff type equation asymptotically linear cut-off functional variational methods
  • 相关文献

参考文献1

二级参考文献20

  • 1Alves, C.O., Correa, F.J.S.A. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl., 49:85-93 (2005).
  • 2Ambrosetti, A., Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 14:349-381 (1973).
  • 3Ancona, P.D', Spagnolo, S. Global Solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math., 108:247-262 (1992).
  • 4Andrade, D., Ma, T.F. An operator equation suggested by a class of nonlinear stationary problems. Comm. Appl. Nonli. Anal., 4:65-71 (1997).
  • 5Arosio, A., Pannizi, S. On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc., 348: 305-330 (1996).
  • 6Bernstein, S. Sur une classe d'equations fonctionnelles aux derivees partielles. Izv. Akad. Nauk SSSR Ser. Mat., 4:17-26 (1940).
  • 7Cavalcanti, M.M., Cavacanti, V.N., Soriano, J.A. Global existence and uniform decay rates for the Kirchhoff- Carrier equation with nonlinear dissipation. Adv. Diff. Eqns., 6:701-730 (2001).
  • 8Chipot, M., Lovat, B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Analysis, 30: 4619-4627 (1997).
  • 9Chipot, M., Rodrigues, J.-F. On a class of nonlocal nonlinear elliptic problems. RAIRO Model. Math. Anal Numer., 26:447-467 (1992).
  • 10Jeajean, L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on R^N, Proc. Roy. Soc. Edinburgh Sect. A, 129:787-809 (1999).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部