期刊文献+

关于具有McDuff性质和Γ性质因子摄动的注记

A note on the perturbation of McDuff factors and factors with propertyΓ
下载PDF
导出
摘要 设L是一个有可分预对偶的Ⅱ1型因子,τ是L的一个正规的忠实的迹态.则L的所有具有Γ性质的子因子构成的集合与L的所有McDuff子因子构成的集合在由迹诱导的Hausdorff距离d 2下是既开又闭的. In this short note,we show that when L is a typeⅡ1 factor with separable predual andτis the normal faithful tracial state of L,the set of subfactors of L with propertyΓand the set of all McDuff subfactors of L are open and closed in the Hausdorff metric d 2 induced by the trace norm.
作者 宗斌 王利广 ZONG Bin;WANG Liguang(School of Mathematical Sciences,Qufu Normal University,273165,Qufu,Shandong,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2020年第2期39-42,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金资助项目(11871303和11671133).
关键词 Ⅱ1型因子 Γ性质 McDuff因子. typeⅡ1 factor propertyΓ McDuff factor.
  • 相关文献

参考文献2

二级参考文献38

  • 1Cameron J, Christensen E, Sinclair A M, et al. Kadison-Kastler stable factors. Duke Math J, 2014, 163:2639 2686.
  • 2Christensen E. Perturbations of type I von Neumann algebras. J London Math Soc, 1975, 9:395-405.
  • 3Christensen E. Perturbation of operator algebras. Invent Math, 1977, 43:1-13.
  • 4Christensen E. Perturbations of operator algebras II. Indiana Univ Math J, 1977, 26:891-904.
  • 5Christensen E. Subalgebras of a finite algebra. Math Ann, 1979, 243:17 29.
  • 6Christensen E. Near inclusions of C*-algebras. Acta Math, 1980, 144:249-265.
  • 7Christensen E, Sinclair A M, Smith R R, et al. Perturbations of C*-algebraie invariants. Geom Punct Anal, 2010, 20 368-397.
  • 8Christensen E, Sinclair A M, Smith R R, et al. The spatial isomorphism problem for close separable nuclear C*- algebras. Proc Natl Acad Sci USA, 2010, 107:58591.
  • 9Christensen E, Sinclair A M, Smith R R, et al. Perturbations of nuclear C*-algebras. Acta Math, 2012, 208:93 150.
  • 10Dong A, Yuan W, Hou C, et al. Representations and operations on reflexive subspace lattices (in Chinese). Sci Sin Math, 2012, 42:321-328.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部