期刊文献+

基于闭塞区间的高速列车运行时间与节能协同优化方法 被引量:6

Cooperative Optimization Method for High-speed Trains Running Time and Energy Saving Based on Block Sections
下载PDF
导出
摘要 提出了一种高速列车运行时间与节能协同优化方法.针对由动态调度层、优化控制层、跟踪控制层组成的列车运行控制与动态调度一体化结构,设计了面向动态调度层和优化控制层的列车运行时间调整策略和节能速度位置曲线.基于高速铁路闭塞区间,建立了列车区间模型和列车速度曲线节能优化模型.利用模型预测控制方法对列车区间运行时间进行调整,优化列车总延误时间;根据调整后的区间运行时间设计列车运行优化速度位置曲线,减少列车运行能耗.仿真算例验证了设计的运行时间与节能协同优化策略的有效性. A cooperative optimization method for high-speed trains running time and energy saving is proposed.For the integrated scheme of train operation control and dynamic rescheduling which consists of dynamic rescheduling layer,optimization control layer and tracking control layer,the running time adjustment strategy and energy saving speed-position trajectory are designed for dynamic rescheduling layer and optimization control layer.The train-section model and energy saving speed trajectory model are established based on the block sections of high-speed railway.The model predictive control method is utilized to adjust the section running time of trains and optimize the total delay time of trains.Then according to the adjusted section running time,the optimal speed-position trajectory is generated for each train so as to reduce the energy consumption.Numerical examples are given to illustrate the effectiveness of the proposed running time and energy saving cooperative optimization strategy.
作者 赵辉 代学武 ZHAO Hui;DAI Xue-Wu(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819)
出处 《自动化学报》 EI CSCD 北大核心 2020年第3期471-481,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61790574,61773111,U1834211) 中国国家铁路集团有限公司科技研究开发计划课题(N2019G020)资助。
关键词 高速列车 一体化 运行时间与节能 协同优化 High-speed train integration running time and energy saving cooperative optimization
  • 相关文献

参考文献1

二级参考文献20

  • 1Cutler C R, Perry R T. Real time optimization with multivariable control is required to maximize profits. Computers & Chemical Engineering, 1983, 7(5): 663-667.
  • 2Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3): 264-275.
  • 3Skogestad S. Self-optimizing control: the missing link between steady-state optimization and control. Computers & Chemical Engineering, 2000, 24(2-7): 569-575.
  • 4Skogestad S. Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5): 487-507.
  • 5Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2013, 9(1): 417-426.
  • 6Yin S, Luo H, Ding S X. Real-time implementation of fault-tolerant control systems with performance optimization. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2402-2411.
  • 7Rahbar K, Xu J, Zhang R. Real-time energy storage management for renewable integration in microgrid: an off-line optimization approach. IEEE Transactions on Smart Grid, 2015, 6(1): 124-134.
  • 8Li H X, Guan S P. Hybrid intelligent control strategy. Supervising a DCS-controlled batch process. IEEE Control Systems, 2001, 21(3): 36-48.
  • 9Wang Z J, Wu Q D, Chai T Y. Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 2004, 12(1): 65-74.
  • 10Yang C H, Gui W H, Kong L S, Wang Y L. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence, 2009, 22(4-5): 786-795.

共引文献11

同被引文献40

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部