摘要
Scanning probe microscopy(SPM) stands out as one of the most powerful tools for characterizing the solid surface and the adsorbed molecules with ?ngstr?m resolution in real space. In particular, this unique technique provides an unprecedented opportunity for directly probing the low-dimensional ices at surfaces. In this perspective, we first review the recent advances of scanning tunneling microscopy(STM) imaging of various two-dimensional(2 D) ice structures on metal[1-7], insulator[8-12], graphite[13-15] surfaces and under strong confinement[10, 16-19]. We then introduce that noncontact atomic-force microscopy(AFM) with a CO-terminated tip enables atomic imaging of a genuine 2 D ice grown on a hydrophobic Au(111) surface with minimal perturbation[20], paying particular attention to the growth processes at the edges of 2 D ice. In the end, we present an outlook on the future applications of 2 D ice as well as the relation between the 2 D and 3 D ice growth.