摘要
Tungsten disulfide(WS2) has been recognized as a promising anode material for rechargeable potassium-ion batteries(PIBs). However, its K-ion intercalation capacity is limited to ~60 mAh·g^(-1). Here, we report a WS2-graphene composite anode which is fabricated through simple filtration of liquid-phase exfoliated WS2 and graphene nanosheet delivers a significantly improved specific capacity of 137 mAh·g^(-1) at a current density of 10 mA·g^(-1). The composite anodes also exhibit remarkable rate capability and long-term cyclability over 500 cycles. These results highlight the WS2-graphene composite structure as a promising anode material for long lifespan rechargeable potassium-ion batteries.
作者
WANG Wei
BAO Jing-Ze
SUN Chuan-Fu
王维;包敬泽;孙传福(CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China;University of Chinese Academy of Sciences,Beijing 100190,China)
基金
financially supported by the National Natural Science Foundation of China(Nos.21771180,51702318)
Natural Science Foundation of Fujian Province(No.2018J01031)。