期刊文献+

Cerium-modified Ni-La2O3/ZrO2 for CO2 methanation 被引量:2

Cerium-modified Ni-La2O3/ZrO2 for CO2 methanation
下载PDF
导出
摘要 The key point in CO2 methanation is to improve the activity at low temperature and the stability.For this purpose,a new cerium-modified Ni-La2O3/ZrO2 catalyst was prepared using La1-xCexNiO3/ZrO2 with perovskite phase as the precursor,which was obtained by citrate complexation combined with an impregnation method.The resulting catalyst was characterized through Nitrogen adsorption and desorption,X-ray diffraction (XRD),Transmission electron microscopy (TEM),Hydrogen temperature programmed reduction (H2-TPR),Temperature-programmed desorption of CO2 (CO2-TPD) and that of H2 (H2-TPD),and X-ray photoelectron spectroscopy (XPS) techniques,and the catalytic performances for CO2 methanation was investigated.Cerium modification could improve the effective activation of CO2,thus enhancing the activity at low temperature for CO2 methanation.The metal Ni nanoparticles prepared using this method were highly dispersed and showed excellent resistance to sintering,leading to very good stability,which could be attributed to the following:Ni nanoparticles could be confined by cerium-modified La2O3;La2O3could be confined by the cerium ions at the La2O3/ZrO2 interface;and the cerium ions were confined by ZrO2. The key point in CO2 methanation is to improve the activity at low temperature and the stability.For this purpose,a new cerium-modified Ni-La2O3/ZrO2 catalyst was prepared using La1-xCexNiO3/ZrO2 with perovskite phase as the precursor,which was obtained by citrate complexation combined with an impregnation method.The resulting catalyst was characterized through Nitrogen adsorption and desorption,X-ray diffraction (XRD),Transmission electron microscopy (TEM),Hydrogen temperature programmed reduction (H2-)TPR),Temperature-programmed desorption of CO2 (CO2-TPD) and that of H2 (H2-TPD),and X-ray photoelectron spectroscopy (XPS) techniques,and the catalytic performances for CO2 methanation was investigated.Cerium modification could improve the effective activation of CO2,thus enhancing the activity at low temperature for CO2 methanation.The metal Ni nanoparticles prepared using this method were highly dispersed and showed excellent resistance to sintering,leading to very good stability,which could be attributed to the following:Ni nanoparticles could be confined by cerium-modified La2O3;La2O3could be confined by the cerium ions at the La2O3/ZrO2 interface;and the cerium ions were confined by ZrO2.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期155-164,共10页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.21872101,21576192) the Natural Science Foundation of Tianjin(18JCZDJC31300)。
关键词 CO2 METHANATION CERIUM PEROVSKITE-TYPE oxide Resistance to SINTERING Nickel Additive CO2 methanation Cerium Perovskite-type oxide Resistance to sintering Nickel Additive
  • 相关文献

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部