期刊文献+

基于粒子群优化粒子滤波和CUDA加速的故障诊断方法 被引量:7

FAULT DIAGNOSIS METHOD BASED ON PSO PARTICLE FILTER AND CUDA ACCELERATION
下载PDF
导出
摘要 在非线性系统中,粒子滤波需要大量粒子才能保证状态估计的准确度,这降低了算法的实时性,导致故障诊断的准确率和实时性不佳。针对该问题,提出基于GPU平台的粒子群优化粒子滤波(PSOPF)并行算法。通过分析PSOPF算法的并行性,设计并实现一种基于CUDA并行计算架构的PSOPF并行算法,利用大量的GPU线程对算法进行加速。为解决拒绝重采样对GPU全局内存的非合并访问带来的执行效率低问题,通过改进拒绝重采样并行算法,使线程束中的线程对同一内存区段中的粒子进行重采样,提高了其执行效率。通过对风力机组变桨距系统故障诊断验证了算法的有效性。实验结果表明,该方法可满足故障诊断准确率和实时性的要求。 In non-linear systems,particle filter requires a large number of particles to ensure the accuracy of state estimation,which reduces the real-time performance of the algorithm,resulting in poor accuracy and real-time performance of fault diagnosis.Aiming at this problem,this paper proposes a particle swarm optimization particle filtering(PSOPF)parallel algorithm based on GPU platform.By analyzing the parallelism of PSOPF algorithm,we designed and implemented a PSOPF parallel algorithm based on CUDA parallel computing architecture,which used a large number of GPU threads to accelerate the algorithm.In order to solve the problem of low execution efficiency caused by the non-coalescing access of the GPU global memory,we improved the parallel algorithm of rejection resampling.It made the threads in the thread bundle by resampling the particles in the same memory segment,and improved the execution efficiency.Finally,we validated the effectiveness of the algorithm through fault diagnosis of wind turbine pitch system.The experimental results show that this method can meet the requirements of fault diagnosis accuracy and real-time performance.
作者 曹洁 李钊 王进花 余萍 Cao Jie;Li Zhao;Wang Jinhua;Yu Ping(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,Gansu,China;Information Engineering Research Center of Manufacturing Industry in Gansu Province,Lanzhou 730050,Gansu,China)
出处 《计算机应用与软件》 北大核心 2020年第4期240-246,251,共8页 Computer Applications and Software
基金 国家自然科学基金项目(61763028) 甘肃省自然科学基金项目(1506RJZA105) 甘肃省工业过程先进控制重点实验室开放课题(XJK201805)。
关键词 GPU 粒子滤波 粒子群优化 重采样 变桨距系统 故障诊断 GPU Particle filter PSO Resampling Variable pitch system Fault diagnosis
  • 相关文献

参考文献4

二级参考文献46

  • 1许秀玲,汪晓东,张浩然.基于卡尔曼滤波器的传感器故障诊断[J].仪器仪表学报,2005,26(z1):79-80. 被引量:10
  • 2陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 5叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 6Okuma K, Taleghani A, de Freitas N. A boosted particle filter: multitarget detection and tracking [C] // Proceedings of European Conf on Computer Vision 2004. Prague: Springer-Verlag, 2004: 28-39.
  • 7Cai Yizheng, de Freitas O, Little J J. Robust visual tracking for multiple targets[C]//Proceedings of European Conference on Computer Vision 2006. Graz: Springer-Verlag, 2006: 107-118.
  • 8Khan Z, Baleh T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence(PAMI), 2005, 27: 1805- 1809.
  • 9Blelloch G E. Prefix sums and their applications [M]. Synthesis of Parallel Algorithms. Pittsburgh: Morgan Kaufmann, 1993.
  • 10Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later[M]. British Columbia: University Press, 2009: 174-178.

共引文献207

同被引文献69

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部