摘要
利用Guo-Krasnoselskii不动点定理、Schauder不动点定理和格林函数的性质,研究一类非线性Riemann-Liouville型分数阶微分方程耦合系统正解的存在性,得到了该耦合系统正解的存在性定理,并举例说明了定理的有效性.
The Guo-Krasnoselskii's fixed point theorem,the Schauder fixed point theorem and the properties of the associated Green’s function are used to study the existence of positive solutions to the coupled system of a class of nonlinear Riemann-Liouville fractional differential equations.Two theorems about the existence of positive solutions are obtained,and two examples are given to illustrate the advantages of the theorems.
作者
薛益民
彭钟琪
XUE Yimin;PENG Zhongqi(School of Mathematics and Physical Science,Xuzhou University of Technology,Xuzhou 221018,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2020年第2期102-106,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11526177)
江苏省自然科学基金项目(BK20151160)
徐州工程学院培育项目(XKY2017113)。
关键词
分数阶微分方程
耦合系统
边值问题
不动点定理
fractional differential equations
coupled system
boundary value problem
fixed point theorem