期刊文献+

高阶驻点上精度保持的六阶WENO有限差分格式

ORDER-PRESERVING SIXTH-ORDER WENO FINITE DIFFERENCE SCHEME IN THE PRESENCE OF HIGH ORDER CRITICAL POINTS
原文传递
导出
摘要 在五阶WENO有限差分格式的基础上,六阶WENO有限差分格式引入了额外的四点模板,减少了WENO格式的数值耗散.然而,该格式在驻点上无法达到理想收敛阶.为解决此问题,本文在非线性权重中引入整体模板的光滑性修正因子,使得驻点上非线性权重更快地收敛于理想权重,理论分析表明改进后的六阶格式能够在驻点上达到理想的六阶精度.驻点上的收敛阶测试和间断问题的数值实验表明,新提出的六阶WENO格式不仅在驻点上能够保持理想收敛精度,在间断问题上能保持本质无振荡的激波捕捉性质,同时在双曲守恒律解的光滑区域有效地求解细小尺度结构,还能够保持原有的六阶格式的计算效率. In order to reduce the numerical dissipation of the WENO finite difference scheme,an additional four-points local substencil is introduced to construct a sixth-order centralupwind WENO finite difference scheme.However,the scheme fails to achieve the formal order of accuracy at the high order critical points.To correct this deficiency of the scheme,a smoothness modifier based on the global six-points stencil is introduced into the non-linear weights to allow a faster converge to the ideal weights at the critical points.Theoretical analysis shows that the improved sixth-order WENO scheme can achieve the ideal sixthorder accuracy at the critical points.The numerical results show that the improved scheme can maintain not only the formal order of accuracy regardless of the critical points and the essentially non-oscillatory shock-capturing property at the shocks/high gradients,while resolving fine scales structures efficiently in the smooth regions in the solution of hyperbolic conservation laws,but also the computational efficiency of the original scheme in solving the hyperbolic conservation laws.
作者 徐捷 高振 曾维新 王保山 Xu Jie;Gao Zhen;Don Wai Sun;Wang Bao-Shan(School of Mathematical Sciences,Ocean University of China,Qingdao 266100,China)
出处 《数值计算与计算机应用》 2020年第1期68-82,共15页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(11871443) 山东省自然科学基金(ZR2017MA016) 山东省高等学校“青创科技计划”(2019KJI002) 中国海洋大学科研启动经费(201712011)。
关键词 WENO格式 驻点 精度保持 非线性权重 WENO scheme Critical points Order-preserving Non-linear weights
  • 相关文献

参考文献1

二级参考文献19

  • 1M. Latini, O. Schilling and W.S. Don, Effects of order of WENO flux reconstruction and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability, J. Comput. Phys., 221 (2007), 805-836.
  • 2Y.B. Zeldovich, On the theory of the propagation of detonation in gaseous system, Zh. Eksp. Teor. Fiz., 10 (1940), 542-568.
  • 3J. von Neumann, Theory of Detonation Waves, John von Neumann, Collected Works, Macmillan, New York, 6 (1942).
  • 4W. Doering, On detonation processes in gases, Ann. Phys., 43 (1943), 421-436.
  • 5A. Bourlioux, A.J. Majda and V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl. Math., 51 (1991), 303-343.
  • 6J.J. Quirk, Godunov-type schemes applied to detonation flows, ICASE Report, 93 15 (1993).
  • 7M.V. Papalexandris, A. Leonard and P.E. Dimotakis, Unsplit schemes for hyperbolic conservation laws with source terms in one space detonation, J. Comput. Phy., 134 (1997), 31-61.
  • 8A.K. Henrick, T.D. Aslam and J.M. Powers, Simulations of pulsating one-dimensional detonations with true fifth order accuracy, J. Comput. Phys., 213 (2006), 311-329.
  • 9G.S. Jiang and C.W. Shu, Efficient Implementation of Weighted ENO Schemes, J. Comput. Phys., 126 (1996), 202-228.
  • 10A.K. Henrick, T.D. Aslam and J.M. Powers, Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. Comput. Phys., 207 (2005), 542-567.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部