期刊文献+

一种基于特征增强的自适应阈值R波检测算法 被引量:3

An Adaptive Threshold R Wave Detection Algorithm Based on Feature Enhancement
下载PDF
导出
摘要 为提高心电信号R波检测准确度,提出了一种基于特征增强的R波检测算法。首先经过小波分析去除心电信号的高频噪声和基线漂移,然后对信号进行差分运算,选取各数据点前后连续10个差分的最大和最小值做乘积运算,达到增强R波特征的目的,最后设定两个自适应阈值,对全部数据完成检测。实验结果:经过MIT-BIH Arrhythmia Database数据验证,R波检测准确度Acc可达99.57%,敏感度Se高达99.76%,真阳性率+P高达99.82%。将得到的结果与已有文献中的方法进行比较,本文算法简单,实时性好,检测准确率高,更符合实际临床应用的需求。 In order to improve the accuracy of R-wave detection of ECG signals, an R-wave detection algorithm based on feature enhancement is proposed. Firstly, the wavelet analysis is used to remove the high-frequency noise and baseline drift of the ECG signal, and then the signal is subjected to differential operation. The maximum and minimum values of 10 consecutive differences before and after each data point are selected as the product to achieve the purpose of enhancing the R-wave feature. Finally, Set two adaptive thresholds to complete the detection of all data. Experimental results: After MIT-BIH Arrhythmia Database data verification, the accuracy of R wave detection Acc can reach 99.57%, the sensitivity Se is as high as 99.76%, and the true positive rate +P is as high as 99.82%, The obtained results are compared with the methods in the existing literature. The algorithm is simple, real-time, and has high detection accuracy, which is more in line with the needs of practical clinical applications.
作者 张存亮 张培茗 白宝丹 ZHANG Cun-liang;ZHANG Pei-ming;BAI Bao-dan(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Medical Instrumentation,Shanghai University of Medicine&Health Sciences,Shanghai 201318,China)
出处 《软件》 2020年第3期74-78,共5页 Software
基金 国家重点研发计划资助(2018YFB1307700) 上海市自然科学基金(16ZR1446800)。
关键词 心电信号 特征增强 R波检测 小波分析 自适应阈值 ECG signal Feature enhancement R wave detection Wavelet analysis Adaptive threshold
  • 相关文献

参考文献5

二级参考文献32

共引文献89

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部