期刊文献+

流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究 被引量:1

Newtonian droplet generation in shear-thinning fluids in flow-focusing microchannel
下载PDF
导出
摘要 采用开源CFD软件OpenFOAM中的interFoam求解器对流动聚焦微通道内微液滴的形成过程进行了数值模拟。通过与文献中的实验数据进行对比,验证了VOF模型和幂律非牛顿流体模型的准确性。并以此为基础模拟了幂律剪切致稀流体中牛顿微液滴的形成过程,研究了幂律流体的幂律指数n和稠度系数K对微液滴生成的影响。研究表明,在滴状和挤压状流型中,离散线颈部宽度与周期内剩余时间呈幂律关系;离散线长度在坍塌阶段呈现线性缓慢增长,在夹断阶段呈现近似指数迅速增长的趋势。随着n和K的增大,液滴的尺寸逐渐减小,而生成频率则逐渐增大,且n的变化比K的变化对其产生的影响更明显。 The interFoam solver in the open source CFD software OpenFOAM was used to numerically simulate the formation of micro-droplets in a flow-focused microchannel.Predictions using the volume-of-fluid(VOF)model and the power-law non-Newtonian model were first validated against measurements in the literature.Then,the formation of Newtonian droplets in power-law shear-thinning fluids was modeled in three different flow regimes.The results illustrate the effects of the power-law index(n)and the consistency coefficient(K)of the power-law fluid on the droplet generation.The results show that the minimum width of the stretching thread has a power-law relationship with using the remaining time in the droplet release cycles in the squeezing and dripping regimes.The thread length increases slowly during the collapse stage and then grows rapidly during the pinch-off stage.The final droplet length decreases with increasing n or K.However,the generation frequency increases as n or K increase.The results also show that n has a greater effect than K on the droplet formation.
作者 陈琦 李京坤 宋昱 何倩 David M Christopher 李雪芳 CHEN Qi;LI Jingkun;SONG Yu;HE Qian;Christopher David M;LI Xuefang(Institute of Thermal Science and Technology,Shandong University,Jinan 250061,Shandong,China;Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第4期1510-1519,共10页 CIESC Journal
基金 山东省自然科学基金项目(ZR2017BEE003) 山东大学基本科研业务费项目。
关键词 多相流 流动聚焦微通道 微流体学 非牛顿流体 multiphase flow flow-focusing microchannel microfluidics non-Newtonian fluids
  • 相关文献

参考文献2

二级参考文献61

  • 1Pit A M, Duits M H G, Mugele F. Sensor. Actuat. B-Chem. , 1990, 1(1-6) : 244-248.
  • 2Di Carlo D, Aghdam N, Lee L P. Anal. Chem. , 2006, 78(14) : 4925-4930.
  • 3Weigl B, Domingo G, LaBarre P, Gerlach J. Lab Chip, 2008, 8(12) : 1999-2014.
  • 4Rios A, Zougagh M, Avila M. Anal. Chim. Acta, 2012, 740:1-11.
  • 5Yah Y J, Boey D, Ng L T, Gruber J, Bettiol A, Thakor N V, Chen C H. Biosens. Bioelectron. , 2016, 77 : 428-434.
  • 6Somaweera H, Ibraguimov A, Pappas D. Anal. Chim. Acta, 2016, 907:7-17.
  • 7Leman M, Abouakil F, Griffiths A D, Tabeling P. Lab Chip, 2015, 15(3) : 753-765.
  • 8Kasule J S, Maddala J, Mobed P, Rengaswamy R. Comput. Chem. Eng. , 2016, 85 : 94-104.
  • 9Chen A F, Huang H X. J. Phys. Chem. C. , 2016, 120(3) : 1556-1561.
  • 10Du G S, Fang Q, Den Toonder J M J. Anal. Chim. Acta, 2016, 903 : 36-50.

共引文献20

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部