期刊文献+

基于语义规则和表情加权的中文微博情感分析方法 被引量:5

Chinese micro-blog emotional analysis method based on semantic rules and expression weighting
下载PDF
导出
摘要 针对目前中文微博情感分析方法考虑因素不全面,从而导致情感分析结果欠佳的问题,提出一种基于语义规则和表情加权的中文微博情感分析方法.该方法在使用传统情感词典分析中文微博情感倾向的基础上,在普通情感词典中融入否定词、程度副词和网络新词,根据中文微博文本独有的语言特点和句式特点,采用从词语到分句再到复句的方式对整个中文微博进行情感分析,进而使用表情加权和语义规则进行权值求和,以确定情感倾向.实验结果表明,较另外3种中文微博情感分析方法,该方法效果更显著,其平均准确率为78.4%,平均查全率为75.2%,平均F值为76.7%. Aiming at the problem that the current Chinese micro-blog emotional analysis methods were not comprehensive,which led to poor sentiment analysis results,a Chinese micro-blog emotional analysis method based on semantic rules and expression weighting was proposed.On the basis of using traditional emotion dictionary to analyze the emotion tendency of Chinese micro-blog,negative words,degree adverbs and network neologisms were incorporated into the general emotion dictionary.According to the unique language characteristics and sentence pattern characteristics of Chinese micro-blog text,the method of emotional analysis from words to clauses and then to complex sentences was adopted to analyze the whole Chinese micro-blog.Expression weighting and semantic rules were used to perform weight summation to determine emotional tendency.The experimental results showed that compared with the other three Chinese micro-blog emotional analysis methods,the proposed method was more effective.It had an average precision rate of 78.4%,an average recall rate of 75.2%,and an average F value of 76.7%.
作者 朱颢东 李雯琦 ZHU Haodong;LI Wenqi(School of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China)
出处 《轻工学报》 CAS 2020年第2期74-82,共9页 Journal of Light Industry
基金 河南省高等学校重点科研项目(19A520009)。
关键词 微博情感 表情符 情感词 语义规则 micro-blog emotion emoticon emotional word semantic rules
  • 相关文献

参考文献14

二级参考文献88

  • 1徐琳宏,林鸿飞.基于语义特征和本体的语篇情感计算[J].计算机研究与发展,2007,44(z2):356-360. 被引量:13
  • 2刘丹青.“唯补词”初探[J].汉语学习,1994(3):23-27. 被引量:68
  • 3张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 4夏齐富.程度副词再分类试探[J].安庆师范学院学报(社会科学版),1996,15(3):63-67. 被引量:18
  • 5朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 6Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 7Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 8Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 9Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 10Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.

共引文献677

同被引文献36

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部