期刊文献+

基于物理建模法的加工中心主轴热误差建模 被引量:3

Thermal Error Modeling of Machining Center Spindle Based on Physical Modeling Method
下载PDF
导出
摘要 针对主轴热误差对机床精度稳定性产生严重影响的问题,提出了一种基于传热理论及热变形机理的主轴热误差预测模型.首先,基于传热机理分析推导出主轴系统的实时温度场模型.然后,根据机床结构尺寸对主轴热变形进行机理分析,并利用物理建模法得到温度场与热误差的关系.最后,在两台同类型的立式加工中心上进行主轴热误差仿真和实验验证.结果表明:主轴热误差模型的平均预测精度达到了95.0%,这证明了该模型具有很高的精度和强鲁棒性. Aiming at the problem that the thermal error of spindles has a serious impact on the accuracy of machine tools,a thermal error prediction model based on heat transfer theory and thermal deformation mechanism was proposed.Firstly,the real-time temperature field model of the spindle system was derived from an analysis of the heat transfer mechanism.Then,the mechanism of the thermal deformation of the main shaft was analyzed according to the size of the machine tool,and the relationship between the temperature field and the thermal error was obtained with the physical modeling method.Finally,the thermal error simulation and experimental verification of the spindle were carried out on two vertical machining centers of the same type.The results showed that the average prediction accuracy of the spindle thermal error model reaches 95.0%,which proves that the model has high precision and robustness.
作者 康程铭 赵春雨 付立新 KANG Cheng-ming;ZHAO Chun-yu;FU Li-xin(School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China;Department of Mechanic Engineering,Chengde Petroleum College,Chengde 067000,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期528-533,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51775094).
关键词 主轴 热误差 热变形 物理建模法 鲁棒性 spindle thermal errors thermal deformations physical modeling robustness
  • 相关文献

参考文献4

二级参考文献46

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2杨建国,张宏韬,童恒超,曹洪涛,任永强.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1389-1392. 被引量:53
  • 3李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 4VAPNIK V. Statistical learning theory[M]. New York: John Wiley, 1998.
  • 5SUYKENS J A K, VAN GESTEL T, DE BREBANTER J, et al. Least squares support vector machines[M]. Singapore: World Scientific Pub. Co., 2002.
  • 6SUYKENS J A K. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1): 85-105.
  • 7YANG S S, LU W C, CHEN N Y, et al. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure, 2005, 719(13): 119-127.
  • 8Ni Jun. CNC machine accuracy enhancement through real-time error compensation [ J]. ASME Journal of Manufacturing Science and Engineering, 1997, 119 (4): 717-725.
  • 9YangJ G, RenY Q, Du Z C. Robust model and real time compensation for the thermal error on a large number of CNC turning centers [J]. Key Engineering Materials, 2004, 259-260:756-760.
  • 10Kang Yuan, Chang Chuan-wei, Huang Yuanruey, et al. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools [J]. International Journal of Machine Tool & Manufacture, 2007, 47(2): 376-387.

共引文献71

同被引文献45

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部