期刊文献+

牙科氧化锆陶瓷微尺度磨削力研究 被引量:1

Micro-scale Grinding Force of Dental Zirconia Ceramics
下载PDF
导出
摘要 基于带有圆弧刃角的圆锥状磨粒形状和突出高度服从瑞利分布的假设,建立单颗磨粒未变形切削厚度数学模型.根据微磨削力的三种不同来源,以单颗磨粒为研究对象,建立磨削过程中单颗磨粒的切削变形力、耕犁力和摩擦力理论模型.结合单位面积内的磨粒数目,建立微磨削力的理论模型.切向磨削力和法向磨削力预测模型的验证结果表明:切向磨削力理论值与实验值平均误差为7.32%,最大误差小于10%;法向磨削力的平均误差为8.18%,最大误差小于20%. Based on the assumption that the shape of conical abrasive with circular edge angles and the protrusion height follow Rayleigh distribution,a mathematical model of undeformed cutting thickness of a single abrasive was established.According to three different sources of the micro-grinding force,a single abrasive was taken as the research object,and a theoretical model of cutting deformation force,plough force and friction force of single abrasive during the grinding process was established.A theoretical model of micro-grinding force was established by combining the number of abrasive per unit area.The verification results of tangential grinding force and normal grinding force prediction models showed that the average error between theoretical and experimental values of tangential grinding force is 7.32%,and the maximum error is less than 10%.The average error of normal grinding force is 8.18%,and the maximum error is less than 20%.
作者 周云光 董彪 岳新伟 谭雁清 ZHOU Yun-guang;DONG Biao;YUE Xin-wei;TAN Yan-qing(School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期557-562,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51905083) 河北省自然科学基金资助项目(E2019501094) 河北省高等学校科学技术研究项目(QN2019321) 中央高校基本科研业务费专项资金资助项目(N172303008,N162303011).
关键词 氧化锆陶瓷 微尺度磨削 磨削力 磨削力预测 磨削力理论模型 zirconia ceramic micro-scale grinding grinding force prediction of grinding force theoretical model of grinding force
  • 相关文献

参考文献2

二级参考文献36

  • 1杨海,程耀东,孙月明.钛合金磨削中的磨削力研究[J].磨床与磨削,1993(2):36-38. 被引量:2
  • 2MALKIN S.磨削技术理论与应用[M].蔡光起等,译.沈阳:东北大学出版社,2002.
  • 3任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011.
  • 4张建华,葛培琪,张磊.基于概率统计的磨削力研究[J].中国机械工程,2007,18(20):2399-2402. 被引量:18
  • 5ZHU B, GUO C, SUNDERLAND J E, MALKIN S. Energy partition to the workpiece for grinding of ceramics[J].Annals of CIRP, 1995, 44(1): 267-270.
  • 6PARK H W. Development of micro-grinding mechanics and machine tools[D]. Atlanta, USA : Georgia Institute of Technology, 2008.
  • 7LEE P H, NAM J S, LI Chengjun, et al. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL)[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(3) : 331-338.
  • 8WEI Chenjun, HUA Dejin, XU Kaizhou, et al. Electrochemical discharge dressing of metal bond micro-grinding tools[J]. International Journal of Machine Tools & Manufacture, 2011, 51: 165-168.
  • 9PARK H W, LIANG S Y. Force modeling of micro-grinding incorporating crystal-lographic effects[J]. International Journal of Machine Tools & Manufacture, 2008, 48: 1658-1667.
  • 10LEE P H, LEE S W. Experimental characterization of micro-grinding process using compressed chilly air[J]. International Journal of Machine Tools & Manufacture, 2011, 51: 201-209.

共引文献16

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部