期刊文献+

脑磁图脑功能连接网络癫痫棘波识别方法研究 被引量:1

Study on Recognition Method of Epileptic Spike in Brain Functional Connectivity Network of Magnetoencephalogram
下载PDF
导出
摘要 脑磁图(MEG)现在被广泛用于临床检查及很多领域的医学研究中,基于静息态的脑磁图脑网络分析能用于研究大脑生理或病理机制。脑磁图分析对癫痫疾病的诊断具有重要的参考价值。对癫痫脑磁信号的自动分类可以及时对患者的情况作出判断,在临床上有很重要的意义。现有文献中对癫痫脑电信号的自动分类方法的研究已比较充分,但对癫痫脑磁信号的研究比较薄弱。提出了一种基于脑功能连接网络的全频段机器学习癫痫脑磁棘波信号自动判别方法,对四种分类器进行了综合判别对比,选择了效果最优的分类器,判别准确率可达到93.8%。因此,该方法在脑磁图癫痫棘波的自动识别与标记方面有较好的应用前景。 Magnetoencephalography(MEG)is now widely used in clinical examination and medical research in many fields.Resting-state-based MEG brain network analysis can be used to study the physiological or pathological mechanism of the brain.Magnetoencephalogram analysis has important reference value for the diagnosis of epilepsy.The automatic classification of epileptic magnetoencephalic signals can make timely judgments about the patient’s condition,which is of great clinical significance.The existing literature on the automatic classification of epileptic EEG signals has been fully studied,but the study of epileptic MEG signals is relatively weak.In this paper,an automatic discrimination method of epileptic magnetoencephalic spike wave signals based on full-band machine learning based on brain functional connectivity network is proposed.Four classifiers are synthetically discriminated and compared,and the classifier with the best effect is selected.The discriminant accuracy can reach 93.8%.Therefore,this method has promising application prospects in automatic recognition and marking of epileptic spikes in MEG.
作者 张航宇 李彬 尹春丽 刘凯 王玉平 张军鹏 ZHANG Hangyu;LI Bin;YIN Chunli;LIU Kai;WANG Yuping;ZHANG Junpeng(Department of Automation,College of Electrical Engineering and Information Technology,Sichuan University,Chengdu 610065,China;Department of Neurology,Xuanwu Hospital,Capital Medical University,Beijing 100053,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第8期136-142,共7页 Computer Engineering and Applications
关键词 静息态脑磁图 脑功能网络 机器学习 特征提取 resting state Magnetoencephalography(MEG) brain function network machine learning feature extraction
  • 相关文献

参考文献2

二级参考文献27

  • 1刘昌,翁旭初,李恩中,李德明,马林.青老年组不同难度下心算活动的脑功能磁共振成像研究[J].心理科学,2005,28(4):845-848. 被引量:12
  • 2李旭升,郭耀煌.基于多重判别分析的朴素贝叶斯分类器[J].信息与控制,2005,34(5):580-584. 被引量:8
  • 3Den Hartog,H.M,et al.Cognitive functioning in young and middle-aged unmedicated out-patients with major depression:testing the effort and cognitive speed hypotheses[J].Psychological Medicine,2003,33(8):1443-1451.
  • 4Yamada,M,et al.EEG power and coherence in presenile and senile depression.Characteristic findings related to differences between anxiety type and retardation type[J].Nippon lka Daigaku Zasshi,1995,62 (2):176-185.
  • 5Henriques,J.B.and R.J.Davidson.Left frontal hypoactivation in depression[J].J Abnorm Psychol,1991,100(4):535-45.
  • 6Bob,P,et al.EEG phase synchronization in patients with paranoid schizophrenia[J].Neuroscience Letters,2008,447(1):73-77.
  • 7Hammond,C,H.Bergman,and P.Brown.Pathological synchronization in Parkinson's disease:networks,models and treatments[J].Trends in Neurosciences,2007,30(7):357-364.
  • 8Lehnertz,K.and C.E.Elger.Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity[J].Physical Review Letters,1998,80(22):5019-5022.
  • 9Botteron,K.N,et al.Volumetric reduction in left subgenual prefrontal cortex in early onset depression[J].Biol Psychiatry,2002,51(4):342-344.
  • 10Drevets,W.C,et al.Subgenual prefrontal cortex abnormalities in mood disorders[J].Nature,1997,386(6627):824-827.

共引文献20

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部