期刊文献+

基于时空聚类的在制品流转状态分析 被引量:1

Analysis of Work-in-Process Logistics State Based on Spatiotemporal Clustering
下载PDF
导出
摘要 针对离散制造车间制造过程监控的需求,提出一种基于时空聚类的在制品流转状态分析方法。通过改进的动态密度网格聚类方法对车间在制品历史位置数据进行分析处理,获取在制品时空轨迹模型;并通过计算实时数据与模型的改进Hausdorff距离来判断在制品流转状态。以某机加工车间为例,验证该方法的可行性和有效性。 Aiming at the demands for manufacturing process monitoring in the discrete manufacturing workshops,an analysis method of Work-in-Process logistics state based on spatiotemporal clustering is proposed.The historical location data collected in the manufacturing process is processed by the modified grid-based clustering method,and the spatio-temporal model of Work-in-Process is established,then the real-time data and the modified Hausdorff distance of the model are calculated for judging the logistics state of Work-in-Process.The machining workshop is taken for example,and the feasibility and effectiveness of this method are verified.
作者 王益聪 郭宇 黄少华 张蓉 冯上海 WANG Yicong;GUO Yu;HUANG Shaohua;ZHANG Rong;FENG Shanghai(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;AVIC Jiangxi Hongdu Aviation Industry Group Company Ltd.,Nanchang 330024,China)
出处 《机械制造与自动化》 2020年第2期12-16,共5页 Machine Building & Automation
基金 国家自然科学基金资助项目(51575274) “十三五”国防基础科研项目(JCKY2016605B006) “十三五”国防基础科研项目(JCKY2016203B083)。
关键词 离散制造 位置数据 聚类 HAUSDORFF距离 状态分析 discrete manufacturing location data clustering Hausdorff distance state analysis
  • 相关文献

参考文献4

二级参考文献102

  • 1王家耀,魏海平,成毅,熊自明.时空GIS的研究与进展[J].海洋测绘,2004,24(5):1-4. 被引量:67
  • 2Laube P, Imfeld S, Weibel R. Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 2005, 19 (6): 639-668.
  • 3Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Pearson Addison-Wesley, 2006: 60-65.
  • 4Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. Foundations of Data Orga- nization and Algorithms, 1993, 730: 69-84.
  • 5Chen L, Ozsu M, Oria V. Robust and fast similarity search for moving object trajectories//Proceedings of the 2005 ACM SIGMOD International Conference on Man- agement of Data. New York, NY, USA: ACM, 2005: 491-502.
  • 6Lee S, Chun S, Kim D, et al. Similarity search for multidi- mensional data sequences//Proceedings of the 16th Inter- national Conference on Data Engineering. Washington D. C. USA: IEEE Computer Society, 2000: 599-608.
  • 7Elnekave S, Last M, Maitnon O. Incremental clustering of mobile objects//Proceedings of the 2007 IEEE 23rd In- ternational Conference on Data Engineering Workshop. Washington, DC, USA: IEEE Computer Society, 2007:585-592.
  • 8Sankoff D, Kruskal J. Time Warps, String Edits, and Mac- romolecules: The Theory and Practice of Sequence Com- parison. MA, USA: Addison-Wesley, 1983.
  • 9Agrawal R, Lin K I, Sawhney H S, et al. Fast similarity Ssearch in the presence of noise, scaling, and translation in time-series databases//Proceedings of the 21th Interna- tional Conference on Very Large Data Bases. San Francis- co, CA, USA: Morgan Kaufmann Publishers Inc., 1995: 490-501.
  • 10Crochemore M, Rytter W. Text Algorithms. New York, NY, USA: Oxford University Press, 1994.

共引文献75

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部