期刊文献+

基于改进的Live-Wire算法在ARPlanner中的应用

Application of Improved Live-Wire Algorithm in ARPlanner
下载PDF
导出
摘要 在精准放疗中,医生在勾画靶区以及危及器官时需要进行大量的修改工作,极大地降低了医生的工作效率与靶区的精准度。为此,本文改进了Live-Wire算法,将梯度幅值的计算由原算法中的水平方向和垂直方向改进为由水平方向、45°方向、垂直方向和135°方向来计算,并将改进的算法运用到ARPlanner软件中,用来交互式勾画患者的危及器官以及靶区。本文将改进的算法与原算法进行了对比,实验结果表明,改进的算法能更准确的检测到组织的边缘。 In precision radiotherapy,doctors need to make a lot of modifications when sketching the target area and organs at risk,which greatly reduces the working efficiency of doctors and the accuracy of the target area.Therefore,this paper improved the Live-Wire algorithm,and improved the calculation of gradient amplitude from the horizontal direction and vertical direction in the original algorithm to the horizontal direction,45°direction,vertical direction and 135°direction.The improved algorithm was applied to the ARPlanner software to interactively sketch the organ at risk and the target area of patients.This paper compared the improved algorithm with the original algorithm,and the experimental results showed that the improved algorithm could more accurately detect the edge of the organization.
作者 汪欣 康世功 郎锦义 WANG Xin;KANG Shigong;LANG Jinyi(Beijing Allcure Medical Technology Group Co.,Ltd.,Beijing 100013,China;US-China Tumor Diagnosis&Treatment Tech.Innovation Research Institute,Beijing 100013,China;Sichuan Cancer Hospital,Chengdu Sichuan 610041,China)
出处 《中国医疗设备》 2020年第4期60-64,共5页 China Medical Devices
基金 国家重点研发计划(2017YFC0113100)。
关键词 Live-Wire算法 ARPlanner软件 梯度幅值 Live-Wire algorithm ARPlanner software gradient
  • 相关文献

参考文献10

二级参考文献59

  • 1段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:377
  • 2[1]Williams Donna, Shah Mubarak. A fast algorithm for active contours an d curvature estimation. CVGIP: Image Understanding,1992,55(1):14~26.
  • 3[2]Kass M, Witkin A, Terzopoulos D. Snake: active contour models. International Journal of Computer Vision. 1988,1(4):321~331.
  • 4[3]Mortensen E N, Barrett W A. Intelligent scissors for image composition. In: Proceedings of the ACM SIGGRAPH 95, Los Angeles, CA, Aug. 1995:191~198.
  • 5[4]Mortensen E N, Morse B S, Barrett W A et al. Adaptive boundary detection using ‘Live-Wire' two-dimensional dynamic programming. In:IEEE Proceedings o f Computers in Cardiology, Durham, NC,USA,1992:635~638.
  • 6[5]Chien Y P, Fu K S. A decision function method for boundary detection. Compute r Graphics and Image Processing, 1974,3(2):125~140.
  • 7[6]Martelli A. An application of heuristic search methods to edge and contour de tection. Communications of the ACM, 1976,19(2):73~83.
  • 8[7]Mortensen E N, Reese L J, Barrett W A. Intelligent selection tools. In: Proc. IEEE: Computer Vision and Pattern Recognition (CVPR'00), Vol. II,Hilton Head, S C, June 2000:776~777.
  • 9[8]Morse B S, Barrett W A, Udupa J K et al. Trainable optimal boundary findi ng using two-dimensional dynamic programming. Technical Report No. MIPG180, Dep artment of Radiology, University of Pennsylvania, Philadelphia, PA, USA,March 1 991.
  • 10陈燕龙,祝成虎.基于Canny算子的边缘检测改进算法[J].计算机应用与软件,2008,25(8):51-53. 被引量:15

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部