期刊文献+

一种基于空谱协同的高光谱端元提取方法研究 被引量:3

Hyperspectral Endmember Extraction Method Based on Spatial-spectral Synergy
下载PDF
导出
摘要 结合空间信息和投票机制,提出了将ISODATA与K-means投票融合的空间预处理方法用于端元提取,并结合3种经典的端元提取算法N-Finder、VCA和OSP进行验证。通过模拟数据与矿区真实数据的对比实验,验证了加入空间信息的端元提取算法能够更有效抑制噪声,从而使提取的端元光谱更加准确。 In this paper, considering the majority voting mechanism and spatial information, we used a spatial preprocessing method integrating ISODATA with K-means voting to extracte endmember, and used three classical endelement extraction algorithms, such as N-Finder, VCA and OSP to verify the results respectively. Then, we conducted the experiments on one simulation data set and one real data set. The results show that the proposed method which considering the spatial information can restrain the noise effectively and achieve better accuracy for endmember extraction.
作者 郭诗韵 GUO Shiyun
出处 《地理空间信息》 2020年第2期34-37,I0006,共4页 Geospatial Information
基金 2017年四川省科技计划项目(2017SZ0081)。
关键词 高光谱影像 端元提取 空间预处理 hyperspectral image endmember extraction spatial preprocessing
  • 相关文献

参考文献1

二级参考文献29

  • 1Berman M, Kiiveri H, Lagerstrom R, Ernst A, Dunne R and Hunt-ington J F. 2003. ICE: an automated statistical approach to identifying endmembers in hyperspectral images. IEEE Inter- national Geoscience and Remote Sensing Symposium, France: Toulouse, l: 279-283.
  • 2Berman M, Kiiveri H, Lagerstrom R, Ernst A, Dunne R and Hunt-ington J F. 2004. ICE: a statistical approach to identifying endmembers in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2085-2095.
  • 3Berman M, Phatak A, Lagerstrom R and Wood B R. 2009. ICE: anew method for the multivariate curve resolution of hyper- spectral images. Journal of Chemometrics, 23(2): 101-116.
  • 4Boardman J W. 1998. Post-ATREM polishing of AVIRIS apparentreflectance data using EFFORT: a lesson in accuracy versus pre- cision. Summaries of the Seventh JPL Airborne Earth Science Workshop. Pasadena: JPL Publication.
  • 5Boardman J W, Kruse F A and Green R O. 1995. Mapping targetsignatures via partial unmixing of AVIRIS data: in Summaries. Fifth JPL Airborne Earth Science Workshop. Pasadena: JPL Publication: 23-26.
  • 6Bowles J H, Palmadesso P J, Antoniades J A, Baumbeck M M andRickard L J. 1995. Use of filter vectors in hyperspectral data analysis. Infrared Spaceborne Remote Sensing III, SPIE Pro- ceedin~s. San Die~o, USA, 2553:148-157.
  • 7Chang C I. 2003. Hyperspectral Imaging: Techniques for SpectralDetection and Classification. New York: Kluwer Academic/Ple- num Publishers: 40-41.
  • 8Chang C I, Du Q, Chiang S S, Heinz D C and Ginsberg I W. 2001.Unsupervised target subpixel detection in hyperspectral im- agery. Conference Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, SPIE Proceedings. Orlando FL, USA, 4381:370-379.
  • 9Chang C I, Wu C C, Liu W M and Ouyang Y C. 2006. A new grow-ing method for simplex-based endmember extraction algorithm. 1EEE Transactions on Geoscience and Remote Sensing, 44(10): 2804-2819.
  • 10Clark R N, Swayze G A, Wise R, Livo K E, Hoefen T M, Kokaly R Fand Sutley S J. 2007. splib06b. USGS Digital Spectral Library. [2009-11-3]. http://speclab.cr.usgs.gov/spectrallib.html.

共引文献31

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部