期刊文献+

多蚁群双信息素疏散路径规划算法 被引量:1

Evacuation Path Planning Algorithm Based on Multi-ant-colony Dual-pheromone
下载PDF
导出
摘要 针对综合交通枢纽的常规旅客疏散问题,以最小化清空时间、最小化累计拥堵系数和最小化人均疏散时间为疏散目标,提出多蚁群双信息素算法。根据乘车意向将疏散人员划分为多个种群,引入种群信息和部落信息素,利用种群信息素的正反馈作用实现同一种群人员的路径寻优,利用部落信息素的负反馈作用实现路径的均衡负载。与ACO和HMERP-ACO算法进行对比,结果表明,提出的算法可以提供更优的疏散路径规划方案。 In view of conventional passenger evacuation at comprehensive transportation hubs,a multi-ant-colony dual-pheromone algorithm was proposed to minimize clearance time,cumulative congestion coefficient and per-capita evacuation time.According to their riding intention,evacuators were divided into different populations.Moreover,population pheromone and tribe pheromone were introduced.Path optimization was realized for passengers of the same population by using the positive feedback action of the population pheromone,while the negative feedback of the tribe pheromone was used to balance path load.A comparison was made with ACO and HMERP-ACO.Experimental results showed that the proposed algorithm could provide a better scheme for planning evacuation paths.
作者 吴世旺 Wu Shiwang(Shanghai Pingkexing Intelligent Technology Co.,Ltd.,Shanghai 200235,China)
出处 《电气自动化》 2020年第2期94-97,共4页 Electrical Automation
关键词 综合交通枢纽 常规疏散 多蚁群 种群信息素 部落信息素 comprehensive transportation hub conventional evacuation multi-ant-colony population pheromone tribe pheromone
  • 相关文献

参考文献3

二级参考文献18

  • 1Yang X S, Deb S. Cuckoo search via Levy flights [C]// proceedings of World Congress on nature & Biologically Inspired Computing, India. USA" IEEE Publications, 2009: 210-214.
  • 2Yang X S, Deb S. Engineering optimization by cuckoo search [J]. Int J Math Modeling & Num Optimization ($2040-3615), 2010, 1(4): 330-343.
  • 3S Walton, O Hassan, K Morgan, et al. Modified cuckoo search: A new gradient free optimization algorithm[J]. Chaos Solitions & Fractals (S0960-0779), 2011, 44(44):710-718.
  • 4M Tuba, M Subotic, N Stanarevic. Modified cuckoo search algorithm for unconstrained optimization problems [C]//Proc. of the 5th European Conference on European Computing Conference (ECC'I 1). USA: World Scientific and Engineering Academy and Society, 2011: 263-268.
  • 5F Wang, L Lou, X He, et al. Hybrid optimization algorithm of PSO and Cuckoo Search [C]//Proc. of 2nd Int. Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC'I 1). Piscataway: IEEE Inc., 2011: 1172-1175.
  • 6Xin-She Yang, Suash Deb. Multiobjective cuckoo search for design optimization [J]. Computer & Operations and Research(S0305-0548), 2013, 40(6): 1616-1624.
  • 7SU GAN THAN. Multi-objective differential evolution with diversity enhancement [J]. Journal of Zhejiang University-Science C(Computer & Electronics)(S2095-9184), 2010, 11(7): 538-543.
  • 8崔喜红,李强,陈晋,陈春晓.基于多智能体技术的公共场所人员疏散模型研究[J].系统仿真学报,2008,20(4):1006-1010. 被引量:34
  • 9徐方,魏东,魏星.公众聚集场所人群疏散基础数据的分析[J].中国安全科学学报,2008,18(4):137-145. 被引量:47
  • 10刘凤龙,陈曦,曹敦.基于差分演化的K-均值聚类算法[J].计算技术与自动化,2010,29(1):48-50. 被引量:5

共引文献33

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部