摘要
针对铀矿山放射性污染物治理需要,根据物联网技术的优良性能,结合铀矿山通风降氡机理,提出了一种基于物联网架构的铀矿山通风降氡监测控制系统,并构建了氡析出自适应神经模糊推理系统模型。通过实时监控及预警,对风机发布远程调控指令,改变井下风量、风压、风流以达到降氡目的。试验分析结果表明,该系统能较好实现铀矿山氡安全监测及控制。
Aiming at the governance needs of radioactive pollutants in uranium mines and according to the excellent performance of Internet of Things technology,combined with the mechanism of uranium mine ventilation and radon reduction,a uranium mine ventilation and radon reduction monitoring control system based on the Internet of Things architecture is proposed and the adaptive neuro-fuzzy inference system(ANFIS) model of radon exhalation is constructed.Through real-time monitoring and early warning,remote control commands are issued to mine fans to change the uranium mine air volume,wind pressure and wind flow to achieve the purpose of radon reduction.The experimental analysis results shows that the system can realize the safety monitoring and control of radon in uranium mine.
作者
邓先红
戴剑勇
汪恒浩
王彬
DENG Xianhong;DAI Jianyong;WANG Henghao;WANG Bin(School of Resources Environment and Safety Engineering,University of South China,Hengyang,Hunan 421001,China;Hunan Province Engineering Research Center of Radioactive Control Technology in Uranium Mining,Hengyang,Hunan 421001,China)
出处
《南华大学学报(自然科学版)》
2020年第1期16-21,28,共7页
Journal of University of South China:Science and Technology
基金
湖南省教育厅资助重点科研项目(18A235)
铀矿冶放射性控制技术湖南省工程研究中心、湖南省铀尾矿库退役治理技术工程技术研究中心联合开放重点课题经费资助项目(2018YKZX1001)。
关键词
物联网
铀矿山
氡及氡子体
通风系统
优化控制
安全监测
internet of things
uranium mine
radon and its progeny
ventilation system
optimization control
safety monitoring