期刊文献+

含有四极矩的后牛顿引力场中试验粒子的运动

The Motion of a Test Particle in the Post-Newtonian Gravitational Field with Quadrupole Moment
下载PDF
导出
摘要 为了研究试验粒子在含有四极矩的后牛顿引力场中的运动规律,采用龙格-库塔法进行数值模拟,同时利用速度因子修正法以保持动力系统数值解的积分守恒,借助快速李雅普诺夫指标来判断试验粒子运动状态演化的混沌性。数值模拟显示:引力源的四极矩会导致试验粒子的运动产生混沌现象。 The motion of a test particle in the gravitational field with quadrupole moment is studied.The study employs the Runge-Kutta method to solve the equations-of-motion,and apply the velocity correction method to keep the integral conservation of the numerical solution of the dynamic system.The chaos of motion is checked with the fast Lyapunov indicator.Numerical simulations shows the motion of the test particle does exhibit chaos in this kind of system.
作者 葛记涛 李杰 林文斌 GE Jitao;LI Jie;LIN Wenbin(School of Mathematics and Physics,University of South China,Hengyang,Hunan 421001,China)
出处 《南华大学学报(自然科学版)》 2020年第1期93-96,共4页 Journal of University of South China:Science and Technology
关键词 四极矩 后牛顿引力场 快速李雅普诺夫指标 混沌 quadrupole moment post-Newtonian gravitational field fast Lyapunov indicator chaos
  • 相关文献

参考文献1

二级参考文献52

  • 1Cornish N J. Phys. Rev. D, 2001, 64:4011.
  • 2Ni W-T, Shiomi S, Liao A-C. Classical Quantum Gravity, 2004, 21:S641.
  • 3Landau L D, Lifshitz E M. The Classical Theory of Fields, Oxford: Pergamon Press, 1971:358-399.
  • 4Wu X, Huang T Y. Phys. Lett. A, 2003, 313:77.
  • 5Irnponente G, Montani G. Phys. Rev. D, 2001, 63:103501.
  • 6伍歆.[D].南京:南京大学,2003:51-90.
  • 7Devany R L. An Introduction to Chaotic Dynamical System, New York: Addison-Wesley Press, 1989:48-49.
  • 8Rasband S N. Chaotic Dynamics of Nonlinear Systems, New York: A Wiley-Interscience Publication, 1990:30 - 170.
  • 9Edward O. Chaos in Dynanfical Systems, Cambridge: Cambridge University Press, 1993:108-150.
  • 10Lichhteuberg A J, Lieberman M A, Regular and Chaotic Dynamics, New York: Springer-Verlag, 1990:298-499.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部