期刊文献+

基于Elman神经网络的锂电池SOH估算 被引量:4

Lithium Battery SOH Estimation based on Elman Neural Network
下载PDF
导出
摘要 利用Elman神经网络完成了对锂电池SOH的估算,以温度、SOC和内阻作为Elman神经网络模型的输入,SOH值作为输出建立Elman神经网络模型,并对模型进行测试,仿真结果表明:该模型的SOH测试相对误差在±1.5%内.最后采用MCU实现数据的采集,在服务器中用java实现基于Elman神经网络的估算算法,该方法释放了下位机的运算压力,提高了处理速度和精度. The Elman neural network is used to estimate the SOH of a lithium battery.The temperature,SOC and internal resistance are used as the input of the Elman neural network model,and the SOH value is used as the output to establish the neural network model.The accuracy of the model is tested,and the relative error is within±1.5%,which achieves a high test accuracy.The MCU is used in data acquisition,and the algorithm based on Elman neural network is implemented in the server.This method releases the calculation pressure of the lower computer and improves the processing speed and accuracy.
作者 邹娟 徐升荣 曾洁 ZOU Juan;XU Shengrong;ZENG Jie(School of Materials Science and Engineering,Dalian Jiaotong University,Dalian 116028,China;Jiangsu Provincial Electric Power Co.,Ltd,Suqian Branch,Suqian 223800,China)
出处 《大连交通大学学报》 CAS 2020年第2期104-108,共5页 Journal of Dalian Jiaotong University
基金 辽宁省自然科学基金资助项目(20180551121) 辽宁省教育厅科学研究计划资助项目(JDL2017039)。
关键词 锂电池 SOH估算 ELMAN神经网络 特征参数 Lithium battery SOH estimation elman neural network characteristic parameters
  • 相关文献

参考文献6

二级参考文献48

  • 1费芹,季敏,朱云.基于人工神经网络的供热管网终端温度预测模型[J].能源工程,2006,26(6):26-28. 被引量:1
  • 2芮执元,任丽娜,冯瑞成.基于Elman神经网络的甘肃电网负荷预测模型[J].现代电力,2007,24(2):26-29. 被引量:13
  • 3雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160. 被引量:34
  • 4GEORGE Sideratos, NIKOS D Hatziargyriou,Senior Me-mber, IEEE. An advanced statistical method for wind powerforecasting[J]. IEEE Transactions on Power Systems, 2007,22(1).
  • 5LI Jun-fang, ZHANG Bu-han, MAO Cheng-xiong, et al.Wind speed prediction based on the elman recursionneural net worksfC]. Proceedings of the 2010 InternationalConference on Modeling, Identification and Control,Okayama,Japan, July 17-19,2010.
  • 6杨桂兴,常喜强,王维庆,等.对风电功率预测系统中预测精度的讨论[J].电网与淸洁能源,2007,27(1): 67-71.
  • 7ZHANG S S, XU K, JOW T R. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery[J].Journal of Power Sources, 2006 (160): 1403-1409.
  • 8FLECKENSTEIN M, BOHLEN O, ROSCHER M A,et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients [J]. Journal of Power Sources. 2011. 196: 4769-4778.
  • 9ZHANG S S, XU K, JOW T R.The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003,115: 137-140.
  • 10程建聪,陈性保,董全峰.聚合物锂离子电池的高倍率放电性能研究[J].电池,2007,37(5):329-332. 被引量:12

共引文献161

同被引文献19

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部