期刊文献+

面向移动平台人脸检测的FaceYoLo算法 被引量:2

FaceYoLo algorithm for face detection on mobile platform
下载PDF
导出
摘要 针对移动平台上人脸检测实时性不强的问题,提出了一种基于深度学习的FaceYoLo实时人脸检测算法。首先,在YoLov3检测算法的基础上,加入快速消化卷积层(RDCL)缩小输入空间,然后加入多尺度卷积层(MSCL)丰富不同检测尺度的感受野,最后加入中心损失和致密化策略加强模型的泛化能力和鲁棒性。实验结果表明,在GPU上测试时,该算法较YoLov3算法在速度上提高至原来的8倍,每幅图像的处理速度可达0.0028 s;精度提高了2.1个百分点;在Android平台上测试时,该算法较最好的MobileNet模型在检测速率上从5 frame/s提升到10 frame/s。通过实验结果可知,该算法能有效提高人脸检测在移动平台上的实时性能。 Concerning the problem of low real-time performance of face detection on mobile platform,a FaceYoLo realtime face detection algorithm based on deep learning was proposed.Firstly,based on the YoLov3 detection algorithm,the Rapidly Digested Convolutional Layers(RDCL)were added to reduce the input space size,then Multiple Scale Convolutional Layers(MSCL)were added to enrich the receptive fields of different detection scales,and finally the central loss and densification strategy were added to strengthen the generalization ability and robustness of the model.The experimental results show that,when tested on the GPU,the proposed algorithm improves the speed by nearly 8 times compared with the YoLov3 algorithm,has the processing time of each image reached 0.0028 s,and increases the accuracy by 2.1 percentage points;when tested on the Android platform,the proposed algorithm has the detection rate increased from 5 frame/s to 10 frame/s compared with the best MobileNet model,demonstrating that the algorithm can effectively improve the real-time performance of face detection on mobile platform.
作者 任海培 李腾 REN Haipei;LI Teng(School of Electrical Engineering and Automation,Anhui University,Hefei Anhui 230601,China)
出处 《计算机应用》 CSCD 北大核心 2020年第4期1002-1008,共7页 journal of Computer Applications
基金 国家重点研发计划项目(2018YFB1305804) 安徽省杰出青年基金资助项目(1908085J25)。
关键词 卷积神经网络 人脸检测 深度学习 移动平台 ANDROID Convolutional Neural Network(CNN) face detection deep learning mobile platform Android
  • 相关文献

参考文献3

二级参考文献20

  • 1TURK M, ALEX P. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(2): 71-86.
  • 2SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10000 classes[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1891-1898.
  • 3HU J, LU J, TAN Y-P. Discriminative deep metric learning for face verification in the wild[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1875-1882.
  • 4HUANG G, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//CVPR '12: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5ZHU Z, LUO P, WANG X, et al. Deep learning identity-preserving face space[C]//ICCV 2013: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013: 113-120.
  • 6SUN Y, WANG X, TANG X. Hybrid deep learning for face verification[C]//ICCV 2013: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013: 2013: 1489-1496.
  • 7TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1701-1708.
  • 8SUN Y, CHEN Y, WANG X, et al. Deep learning face representation by joint identification-verification[C]//NIPS 2014: Advances in Neural Information Processing Systems 27. Cambridge, MA: MIT Press, 2014: 1988-1996.
  • 9HINTON G E, OSINDERO S, THE Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 10HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.

共引文献50

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部