期刊文献+

基于视觉误差与语义属性的零样本图像分类 被引量:4

Zero-shot image classification based on visual error and semantic attributes
下载PDF
导出
摘要 在图像分类的实际应用过程中,部分类别可能完全没有带标签的训练数据。零样本学习(ZSL)的目的是将带标签类别的图像特征等知识迁移到无标签的类别上,实现无标签类别的正确分类。现有方法在测试时无法显式地区分输入图像属于已知类还是未知类,很大程度上导致未知类在传统设定下的ZSL和广义设定下的ZSL(GZSL)上的预测效果相差甚远。为此,提出一种融合视觉误差与属性语义信息的方法来缓解零样本图像分类中的预测偏置问题。首先,设计一种半监督学习方式的生成对抗网络架构来获取视觉误差信息,由此预测图像是否属于已知类;然后,提出融合属性语义信息的零样本图像分类网络来实现零样本图像分类;最后,测试融合视觉误差与属性语义的零样本图像分类方法在数据集AwA2和CUB上的效果。实验结果表明,与对比模型相比,所提方法有效缓解了预测偏置问题,其调和指标H在AwA2(Animal with Attributes)上提升了31.7个百分点,在CUB(Caltech-UCSD-Birds-200-2011)上提升了8.7个百分点。 In the practical applications of image classification,some categories may have no labeled training data at all.The purpose of Zero-Shot Learning(ZSL)is to transfer knowledge such as image features of labeled categories to unlabeled categories and to correctly classify the unlabeled categories.However,the existing state-of-the-art methods cannot explicitly distinguish the input image belonging to the known categories or unknown categories,which leads to a large performance gap for unlabeled categories between the traditional ZSL prediction and the Generalized ZSL(GZSL)prediction.Therefore,a method of fusing of visual error and semantic attributes was proposed to alleviate the prediction bias problem in zero-shot image classification.Firstly,a semi-supervised learning based generative adversarial network framework was designed to obtain visual error information,so as to predict whether the image belongs to the known categories.Then,a zero-shot image classification network combining semantic attributes was proposed to achieve zero-shot image classification.Finally,the performance of zero-shot image classification algorithm combining visual error and semantic attributes was tested on AwA2(Animal with Attributes)and CUB(Caltech-UCSD-Birds-200-2011)datasets.The experimental results show that,compared to the baseline models,the proposed method can effectively alleviate the prediction bias problem,and has the harmonic index H increased by 31.7 percentage points on AwA2 dataset and 8.7 percentage points on CUB dataset.
作者 徐戈 肖永强 汪涛 陈开志 廖祥文 吴运兵 XU Ge;XIAO Yongqiang;WANG Tao;CHEN Kaizhi;LIAO Xiangwen;WU Yunbing(College of Computer and Control Engineering,Minjiang University,Fuzhou Fujian 350108,China;College of Mathematics and Computer Science,Fuzhou University,Fuzhou Fujian 350116,China;Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing(Fuzhou University),Fuzhou Fujian 350116,China;Digital Fujian Financial Big Data Institute,Fuzhou Fujian 350116,China)
出处 《计算机应用》 CSCD 北大核心 2020年第4期1016-1022,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61772135,U1605251,61703195) 中国科学院网络数据科学与技术重点实验室开放课题基金资助项目(CASNDST201708,CASNDST201606) 模式识别国家重点实验室开放课题基金资助项目(201900041) 福建省自然科学基金面上项目(2017J01755) 赛尔网络下一代互联网技术创新项目(NGII20160501)。
关键词 零样本学习 图像分类 生成对抗网络 视觉误差 属性语义 Zero-Shot Learning(ZSL) image classification generative adversarial network visual error semantic attribute
  • 相关文献

参考文献1

二级参考文献20

  • 1FERRARI V, ZISSERMAN A. Learning visual at-tributes[C]//Proceedings of the Advances in Neural Information Processing Systems. Vancouver: Curran Associates Inc Press, 2007 : 433-440.
  • 2WAN K W, ROY S. Identifying and learning visual attributes for object recognition[C]//Proceedings of the IEEE International Conference on Image Process- ing. Piseataway : IEEE Inc Press, 2010 : 3893-3896.
  • 3FARHADI A, ENDRES I, HOIEM D, et al. Descri- bing objects by their attributes[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition. Piscataway: IEEE Inc Press,2009 : 1778-1785.
  • 4SONG F Y,TAN X Y,CHEN S C. Exploiting rela- tionship between attributes for improved face verifiea- tion[J].Computer Vision and Image Understanding, 2014,122(4) : 143-154.
  • 5HENG T C,FENG T S,MARTIN G. NuActiv:Rec- ognizing unseen new activities using semantic attrib- ute-based learning[C]//Proceedings of the llth An- nual International Conference on Mobile Systems, Applications,and Services. New York: ACM Press, 2013:361-374.
  • 6KOVASHKA A,PARIKH D,GRAUMAN K. Whit- tle Search: Image search with relative attribute feed- back[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alam- itos: IEEE Computer Society Press, 2012 : 2973-2980.
  • 7LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between- class attribute transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni- tion. Piscataway: IEEE Inc Press, 2009 : 951-958.
  • 8PALATUCCI M, POMERLEAU D, HINTON G E, et al. Zero-shot learning with semantic output codes [C]//Proceedings of the Advances in Neural Infor- mation Processing Systems. Vancouver:Curran Asso- ciates Inc Press,2009:1410-1418.
  • 9YU X, ALOIMONOS Y. Attribute-based transfer learning for object categorization with zero or one training example[C]//Proceedings of the llth Euro- pean Conference on Computer Vision. Berlin:Spring- er Verlag Press, 2010 : 127-140.
  • 10ROHRBACH M, STARK M, SZARVAS G, et al. Combining language sources and robust semantic re- latedness for attribute-based knowledge transfer [C]//Proceedings of the l lth European Conference on Computer Vision. Berlin: Springer Verlag Press, 2010:15-28.

共引文献6

同被引文献43

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部