摘要
Nowadays,hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry.Here,we report a dualtemplate strategy using eutectic NaCl/ZnCl2 melt as airtight and swelling agent to obtain 3D mesoporous skeleton structured carbon from renewable lignin.The prepared lignin-derived biocarbon material(LN-3-1)has a high specific surface area(1289 m^2 g^-1),a large pore volume(2.80 cm^3 g^-1),and a well-connected and stable structure.LN-3-1 exhibits extremely high activity and stability in acidic medium for oxygen reduction reaction(ORR),superior to Pt/C catalyst and most non noble-metal catalysts reported in recent literatures.The prepared carbon material was used as a cathode catalyst to assemble a H2-O2 single fuel cell,and its excellent catalytic performance has been confirmed with the maximum power density of 779 mW cm^-2,which is one of the highest power densities among non-metallic catalysts so far.Density functional theory(DFT)calculations indicate that the synergy of chlorine and nitrogen reconciles the intermediate adsorption energies,leading to an appropriate theoretical ORR onset potential.We develop a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in proton-exchange membrane fuel cells.
Nowadays, hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry. Here, we report a dualtemplate strategy using eutectic NaCl/ZnCl2 melt as airtight and swelling agent to obtain 3D mesoporous skeleton structured carbon from renewable lignin. The prepared lignin-derived biocarbon material(LN-3-1) has a high specific surface area(1289 m2 g-1), a large pore volume(2.80 cm3 g-1), and a well-connected and stable structure. LN-3-1 exhibits extremely high activity and stability in acidic medium for oxygen reduction reaction(ORR), superior to Pt/C catalyst and most non noble-metal catalysts reported in recent literatures. The prepared carbon material was used as a cathode catalyst to assemble a H2-O2 single fuel cell, and its excellent catalytic performance has been confirmed with the maximum power density of 779 mW cm-2, which is one of the highest power densities among non-metallic catalysts so far. Density functional theory(DFT) calculations indicate that the synergy of chlorine and nitrogen reconciles the intermediate adsorption energies, leading to an appropriate theoretical ORR onset potential. We develop a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in proton-exchange membrane fuel cells.
基金
the financial support from the National Natural Science Foundation of China(No.21373091)
the Science and Technology Project of Guangzhou City(No.201704030040).