期刊文献+

基于增量式SFM的特定目标加速定位方法

Specific Target Acceleration Positioning Method Based on Incremental SFM
下载PDF
导出
摘要 针对当前增量式运动恢复结构法中每加入一幅图片需要循环多次光束平差迭代造成的大计算量和三维重建过程点云目标针对性弱等问题,提出两步改进方法。首先,引入一种分段调节函数。在三角化步骤之后,计算系统的重投影误差,通过比较此误差与事先设定的阈值,以此判断后续局部迭代优化步骤的运行方式。随后,待所有图像注册完毕,使用SURF算法进行二次图像匹配。确定特定目标的图像坐标和对应空间相对位置,并完成对应点云重建过程,同时滤除无用冗余信息。实验证明,改进方法在基本维持原有定位精度的基础上,可以较大的提高系统运行速度,并且能够从众多目标中快速准确地找到所需目标位置,最终生成空间点云,具有较强的实用价值。 Aiming at the problem that the large amount of computation caused by multiple local BA iterations and the weak target of the point cloud target in the three-dimensional reconstruction process are added for each incremental SFM in the current incremental SFM,a two-step improved method is proposed.First,a segmentation adjustment function was introduced.After the triangulation step,the reprojection error of the system was calculated,and the operation mode of the subsequent local iteration BA step was judged by comparing the error with a preset threshold.Subsequently,after all images have been registered,the SURF algorithm was used for secondary image matching.The image coordinates of the specific target and the relative position of the corresponding space were determined,and the corresponding point cloud reconstruction process was completed,while filtering out the useless redundant information.The experiment proves that the improved method can greatly improve the system running speed based on the basic maintenance accuracy,and can find the required target position from many targets quickly and accurately and generate a spatial point cloud finally with strong practical value.
作者 凌寒羽 王培元 彭彬彬 LING Han-yu;WANG Pei-yuan;PENG Bin-bin(Naval Aviation University,Yantai Shandong 264001,China;Chinese PeopleJ s Liberation Army 92074,Ningbo Zhejiang 315000,China)
出处 《计算机仿真》 北大核心 2020年第3期243-248,263,共7页 Computer Simulation
基金 泰山学者工程专项经费(ts201712072)。
关键词 增量式运动恢复结构法 光束平差迭代 分段调节函数 特定目标定位 Incremental SFM Local BA iteration Segmentation adjustment function Specific targeting
  • 相关文献

参考文献4

二级参考文献116

  • 1朱仁璋,林彦,张磊.航天器交会计算机视觉系统测距求解新算法[J].北京航空航天大学学报,2006,32(7):764-768. 被引量:14
  • 2Fusiello A. Uncalibrated Euclidean reconstruction: A review[ J]. Image and Vision Computing, 2000, 18(6-7) :555-563.
  • 3Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera [ J]. International Journal of Computer Vision, 1992, 8(2): 123-151.
  • 4Hartley R. Estimation of relative camera position for uncalibrated cameras[ C ]//Proceedings of the 2nd European Conference on Computer Vision. London, UK: Springer-Verlag, 1992:579-587.
  • 5Mendonca P, Cipolla R. A simple technique for self-calibration [ C]. In the Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE Press, 1999:112-116.
  • 6Kennedy J, Eberhart R. Particle swarm optimization [ C ]// Proceedings of the IEEE International Conference on Neural Networks. Piscataway, N J, USA: IEEE Press, 1995: 1942-1948.
  • 7Kennedy J, Eberhart R. A new optimizer using particle swarm theory[ C ]//Proceedinds of the 6th International Symposium on Micro Machine and Human Science. Piscataway, NJ, USA: IEEE Press, 1995 : 39- 43.
  • 8Shi Y, Eberhart R. A modified particle swarm optimizer [ C ]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway,NJ,USA:IEEE Press,1998:69-73.
  • 9Hartley R. In defence of the eight-point algothm [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(6):580-593.
  • 10Lourakis L, Deriche R. Camera Self-Calibration Using the svd of the Fundamental Matrix: Technical Report 3748 [ R ] . Sophia Antipolis, France: The France National Institute for Research in Computer Science and Control, 1999.

共引文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部