期刊文献+

基于主成分分析的网络时延特征数据提取仿真 被引量:7

Simulation of Network Delay Feature Extraction Based on Principal Component Analysis
下载PDF
导出
摘要 为了能够快速提供网络时延特征数据,需要对其进行特征数据提取。但当前特征数据提取过程中,普遍存在着特征数据提取所需完成时间过长、提取误差率较大、成本消耗较高等问题。提出基于主成分分析法的网络时延特征数据提取方法。通过对网络时延特征数据进行分析,采用最小-最大标准化方法对特征数据进行模糊化处理,获取特征数据的模糊规则匹配度,将模糊规则匹配度在各个分类规则上进行归一化处理得到特征数据分类匹配度,求出特征数据规则权重值,利用特征数据样本分类健全度对网络时延特征数据规则权重值进行分类。利用主成分分析法获取特征数据特征向量,采用Relief算法对特征数据向量进行提取,实验结果表明,所提出方法特征数据提取所需完成时间短、提取误差率较小、成本消耗较低。 In order to provide the network delay feature data quickly,it is necessary to extract the feature data.Traditional feature data extraction methods have long extraction time,large the error rate and high cost consumption.Therefore,a network delay feature data extraction method based on principal component analysis was put forward.Based on the analysis of network delay feature data,the minimum-maximum standardization was used to blur the feature data,so that the fuzzy rule matching degree of feature data was obtained.The matching degree of fuzzy rule was normalized on each classification rule to get the classification matching degree of feature data,so as to find weight value of feature data rule.The integrity degree of feature data sample classification was used to classify the weight values of network delay feature data rule.Moreover,the principal component analysis was used to obtain the feature vector of feature data.Finally,feature data vector was extracted by Relief algorithm.Simulation results show that the proposed method needs short time to extract feature data.Meanwhile,the error rate and cost are low.
作者 张玉霖 ZHANG Yu-lin(College of Humanities&Information,Changchun University of Technology,Changchun Jilin 130122,China)
出处 《计算机仿真》 北大核心 2020年第3期301-304,共4页 Computer Simulation
关键词 网络时延 特征数据 提取 主成分分析法 Network delay Feature data Extraction Principal component analysis
  • 相关文献

参考文献11

二级参考文献101

  • 1范军,梁恒,石晓强.微流控电泳芯片中化学发光信号的分段门限小波降噪[J].高等学校化学学报,2005,26(11):2010-2014. 被引量:4
  • 2蔡铁,朱杰.小波阈值降噪算法中最优分解层数的自适应选择[J].控制与决策,2006,21(2):217-220. 被引量:44
  • 3刘吉臻,杨光军,谭文,房方.基于数据驱动的电站燃烧稳定度综合评价[J].中国电机工程学报,2007,27(35):1-6. 被引量:14
  • 4中华人民共和国工业和信息化部.2015年7月电话用户分省情况[EB/OL].2015[2015-07-16].http://www.miit.gov.cn/n1146312/n1146904/n1648372/c3337869/content.html.
  • 5Calabrese F,Diao M,Di Lorenzo G.Understanding Individual Mobility Patterns from Urban Sensing Data:A Mobile Phone Trace Example[J].Transportation Research Part C:Emerging Technologies,2013,26:301-313.
  • 6Aguiléra V,Allio S,Benezech V,et al.Using Cell Phone Data to Measure Quality of Service and Passenger Flows of Paris Transit System[J].Transportation Research Part C:Emerging Technologies,2014,43:198-211.
  • 7Shanghai Meihui Software Co.,Ltd.Traffic Data Experts with Muti-source Data[EB/OL].2015[2015-11-21].http://www.meihuichina.com/e-index.htm.
  • 8Auld J,Williams C,Mohammadian A,et al.An Automated GPS-based Prompted Recall Survey with Learning Algorithms[J].Transportation Letters,2009,1(1):59-79.
  • 9Wolf J,Bachman W,Auld J,et al.Applying GPS Datato Understand Travel Behavior[R].NCHRPR775,Washington DC:Transportation Research Board,2014.
  • 10Bohte W,Maat K.Deriving and Validating Trip Purposes and Travel Modes for Multiday GPS-based Travel Surveys:A Large-scale Application in the Netherlands[J].Transportation Research Part C:Emerging Technologies,2009,17(3):285-297.

共引文献92

同被引文献95

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部