期刊文献+

非接触式旋转超声加工装置的电路补偿研究 被引量:2

Study on Compensation of Rotating Ultrasonic Machining Equipment Based on Contactless Power Transmission
下载PDF
导出
摘要 针对松耦合变压器耦合系数较低和漏感的问题,对非接触电能传输装置的结构特性和补偿方式进行深入研究。借助Maxwell软件对松耦合变压器的磁场进行仿真分析,求解磁场的分布情况和不同气隙下对应的自感互感参数,并结合等效电路和松耦合系统的互感模型,阐明了四种补偿方式电容参数的计算过程。最后,通过理论计算和Multism仿真分析,研究不同补偿方式和多种因素对系统传输功率的影响。不同因素对传输功率影响的分析结果,可以为实际工程设计提供参考,具有重要的意义。 In view of the problems about the low coupling coefficient and the leakage inductance of the loose coupling transformer,the structural characteristics and compensation methods of non-contact power transmission equipment are deeply studied.With the Maxwell software,the magnetic field of the loose coupling transformer is simulated and analyzed,and the distribution of magnetic field and the parameter of self-inductance and mutual inductance with the change of air gap are solved.Combined with the equivalent circuit and the mutual inductance model of the loose coupling transformer,the calculation process of the compensation parameters of the four kinds of compensation modes is illustrated.Finally,through theoretical calculation and Multism simulation analysis,the impact of different compensation methods and different factors on the transmission power of the system is studied.The analysis results of the influence of different factors on the transmission performance can provide important reference for the actual engineering design,which is of great significance.
作者 孙培星 陈涛 唐梦南 SUN Pei-xing;CHEN Tao;TANG Meng-nan(School of Mechanical and Electronic Engineering Wuhan University of Technology,Hubei Wuhan430070,China)
出处 《机械设计与制造》 北大核心 2020年第4期230-232,共3页 Machinery Design & Manufacture
基金 湖北省科技攻关计划(2015BAA022)。
关键词 超声加工 非接触 电能传输 松耦合 补偿拓扑结构 Ultrasonic Machining Contactless Power Transmission Loose Coupling Compensation Topology
  • 相关文献

参考文献3

二级参考文献31

  • 1郭建中,林书玉,高伟.超声换能器电感电容匹配电路的改进[J].压电与声光,2005,27(3):257-259. 被引量:26
  • 2Kim C G, Seo D H, You J S, et al. Design of a contactless battery charger for cellular phone[J]. IEEE Transactions on Industrial Electronics, 2001, 48(6): 1238-1247.
  • 3Choi B, Nho J, Cha H, Ahn T, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140-147.
  • 4Pedder D A G, Brown A D, Skinner J A. A contactless electrical energy transmission system[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 23-30.
  • 5Ghahary A, Cho B H. Design of a transcutaneous energy transmission system using a series resonant converter[J]. IEEE Transactions on Power Electronics, 1992, 7(2): 261-269.
  • 6Jang Y, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 520-527.
  • 7Joung G B, Cho B H. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE Transactions on Power Electronics, 1998, 13(6): 1013-1022.
  • 8Sakamoto H, Harada K. A novel circuit for noncontact charging through electro-magnetic coupling [C]. In Proceedings of IEEE PESC 1992, Fukuoka, Japan, 1992: 168-174.
  • 9Abe H, Sakamoto H, Harada K. A noncontact charger using resonant converter with parallel capacitor of the secondary coil[J]. IEEE Transactions on Industrial Applications, 1998, 36(2): 444-451.
  • 10Wang C S, Covic G A, Stielar O H. Investigatng an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 995-1002.

共引文献89

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部